Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wavelength-dependent perpendicular-harmonics efficiency from oriented CO2 molecule

Li Yan-Peng Yu Shu-Juan Chen Yan-Jun

Citation:

Wavelength-dependent perpendicular-harmonics efficiency from oriented CO2 molecule

Li Yan-Peng, Yu Shu-Juan, Chen Yan-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we numerically study the efficiencies of high-order harmonic generation (HHG) from CO2 molecule exposed to strong laser fields with different laser wavelengths and different orientation angles. Through calculating the HHG spectra in the directions parallel and perpendicular to the laser polarization, we show that the efficiency of perpendicular harmonics can be higher than or comparable to the parallel ones at the relatively small and intermediate orientation angles in some wavelength cases. At larger angles, the efficiency of perpendicular harmonics is generally lower than the parallel one. Further analyses show that the structure of the CO2 molecule plays an important role in the HHG efficiency and this role is also related to the laser wavelength. Specifically, we show that the relative yields of perpendicular harmonic versus parallel harmonic are closely associated with the parallel and perpendicular dipoles of the molecule. Due to the effect of two-center interference, the parallel or perpendicular dipoles of the molecule show some deep hollows in some energy regions, which depend on the molecular orientation, and so do the corresponding parallel and perpendicular harmonics. As the parallel harmonics are suppressed due to the interference effect strongly in some energy regions, the yields of the perpendicular harmonics, which are not subjected to the interference effect in the corresponding energy regions, can be higher than the parallel one. As a result, the integrated harmonic yield (i.e., the harmonic efficiency) in the perpendicular case can be higher than the parallel one, especially for the cases with short laser wavelengths and small orientation angles. In these cases, the interference effect induces the suppression of parallel harmonics in the whole HHG plateau. We therefore expect that the interference effect plays an important role in the HHG efficiency in these cases. For the case of long laser wavelength, the HHG plateau extends to high energy region and the main contributions to the integrated HHG yield can come from harmonics out of the interference-effect-dominating region. As a result, the interference effect plays a smaller role in determining the HHG efficiencies of parallel and perpendicular harmonics, in comparison with the case of short laser wavelength. For large orientation angles, the value of the perpendicular dipole is smaller than the parallel one in a wide energy region, and accordingly, the perpendicular harmonics are weaker than the parallel ones on the whole. As a rule, the parallel efficiency is usually higher than the perpendicular one. As the perpendicular harmonic can contribute importantly to the harmonic emission in some cases, our results suggest that for the complicated molecule, the perpendicular harmonics should be considered in the molecular orbital tomography experiments.
      Corresponding author: Yu Shu-Juan, yushujuan1129@163.com;chenyanjun@snnu.edu.cn ; Chen Yan-Jun, yushujuan1129@163.com;chenyanjun@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274090) and the Fundamental Research Funds for the Central Universities, China (Grant No. GK201403002).
    [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [2]

    Antoine P, L’Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234

    [3]

    Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501

    [4]

    Zheng J, Sheng Z M, Zhang J 2005 Acta Phys. Sin. 54 2638(in Chinese) [郑君, 盛政明, 张杰 2005 54 2638]

    [5]

    Paul P M, Toma E S, Breger P 2001 Science 292 1689

    [6]

    Hentschel M, Kienberger R 2001 Nature 414 509

    [7]

    Chen J G, Yang Y J, Zeng S L, Liang H Q 2011 Phys. Rev. A 83 023401

    [8]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201(in Chinese) [曾婷婷, 李鹏程, 周效信 2014 63 203201]

    [9]

    Christov I P, Zhou J, Peatross J, Rundquist A, Murnane M M, Kapteyn H C 1996 Phys. Rev. Lett. 77 1743

    [10]

    Ditmire T, Kulander K, Crane J, Nguyen H, Perry M 1996 J. Opt. Soc. Am. B 13 406

    [11]

    Tate J, Auguste T, Muller H G, Salières P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901

    [12]

    Schiessl K, Ishikawa K L, Persson E, Burgdörer J 2007 Phys. Rev. Lett. 99 253903

    [13]

    Frolov M V, Manakov N L, Starace A F 2008 Phys. Rev. Lett. 100 173001

    [14]

    Yakovlev V, Ivanov M, Krausz F 2007 Opt. Express 15 15351

    [15]

    Lan P F, Eiji J T, Katsumi M 2010 Phys. Rev. A 81 061802

    [16]

    Liu C D, Zeng Z N, Wei P F, Liu P, Li R X, Xu Z Z 2010 Phys. Rev. A 81 033426

    [17]

    Falcao-Filho E L, Gkortsas V M, Gordon A, Katner F X 2009 Opt. Express 17 11217

    [18]

    Pérez-Hernández J A, Roso L, Plaja L 2009 Opt. Express 17 9891

    [19]

    Jin C, Le A T, Lin C D 2011 Phys. Rev. A 83 023411

    [20]

    Austin D R, Biegert J 2012 Phys. Rev. A 86 023813

    [21]

    Auguste T, Catoire F, Agostini P, DiMauro L F, Chirila C C, Yakovlev V S, Salières P 2012 New J. Phys. 14 103014

    [22]

    Le A T, Wei H, Jin C, Tuoc V N, Morishita T, Lin C D 2014 Phys. Rev. Lett. 113 033001

    [23]

    Cui X, Li S Y, Guo F M, Tian Y Y, Chen J G, Zeng S L, Yang Y J 2015 Acta Phys. Sin. 64 043201(in Chinese) [崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军 2015 64 043201]

    [24]

    Shan B, Chang Z 2001 Phys. Rev. A 65 011804

    [25]

    Yu S J, Zhang B, Li Y P, Yang S P, Chen Y J 2014 Phys. Rev. A 90 053844

    [26]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007 Phys. Rev. Lett. 98 203901

    [27]

    Zhao D, Li F L 2013 Chin. Phys. B 22 064215

    [28]

    Feng L Q, Liu H 2015 Chin. Phys. B 24 034206

    [29]

    Diao H H, Zheng Y H, Zhong Y, Zeng Z N, Ge X C, Li C, Li R X, Xu Z Z 2014 Chin. Phys. B 23 104210

    [30]

    Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201

    [31]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguère M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902

    [32]

    Chen Y J, Zhang B 2011 Phys. Rev. A 84 053402

    [33]

    Zhang B, Chen Y J, Jiang X Q, Sun X D 2013 Phys. Rev. A 88 053428

    [34]

    Itatani J, Zeidler D, Levesque J, Spanner M, Villeneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902

    [35]

    Levesque J, Zeidler D, Marangos J P, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 183903

    [36]

    Patchkovskii S, Zhao Z, Brabec T, Villeneuve D M 2006 Phys. Rev. Lett. 97 123003

    [37]

    Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E, Marangos J P 2007 Phys. Rev. Lett. 98 203007

    [38]

    Le V H, Le A T, Xie R H, Lin C D 2007 Phys. Rev. A 76 013414

    [39]

    Chen Y J, Hu B 2009 J. Chem. Phys. 131 244109

    [40]

    Itatani J, Levesque J, Zeidler D, Hiromichi N, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [41]

    Chen Y J, Liu J 2008 Phys. Rev. A 77 013410

    [42]

    Chen Y J, Chen J, Liu J 2006 Phys. Rev. A 74 063405

  • [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [2]

    Antoine P, L’Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234

    [3]

    Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501

    [4]

    Zheng J, Sheng Z M, Zhang J 2005 Acta Phys. Sin. 54 2638(in Chinese) [郑君, 盛政明, 张杰 2005 54 2638]

    [5]

    Paul P M, Toma E S, Breger P 2001 Science 292 1689

    [6]

    Hentschel M, Kienberger R 2001 Nature 414 509

    [7]

    Chen J G, Yang Y J, Zeng S L, Liang H Q 2011 Phys. Rev. A 83 023401

    [8]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201(in Chinese) [曾婷婷, 李鹏程, 周效信 2014 63 203201]

    [9]

    Christov I P, Zhou J, Peatross J, Rundquist A, Murnane M M, Kapteyn H C 1996 Phys. Rev. Lett. 77 1743

    [10]

    Ditmire T, Kulander K, Crane J, Nguyen H, Perry M 1996 J. Opt. Soc. Am. B 13 406

    [11]

    Tate J, Auguste T, Muller H G, Salières P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901

    [12]

    Schiessl K, Ishikawa K L, Persson E, Burgdörer J 2007 Phys. Rev. Lett. 99 253903

    [13]

    Frolov M V, Manakov N L, Starace A F 2008 Phys. Rev. Lett. 100 173001

    [14]

    Yakovlev V, Ivanov M, Krausz F 2007 Opt. Express 15 15351

    [15]

    Lan P F, Eiji J T, Katsumi M 2010 Phys. Rev. A 81 061802

    [16]

    Liu C D, Zeng Z N, Wei P F, Liu P, Li R X, Xu Z Z 2010 Phys. Rev. A 81 033426

    [17]

    Falcao-Filho E L, Gkortsas V M, Gordon A, Katner F X 2009 Opt. Express 17 11217

    [18]

    Pérez-Hernández J A, Roso L, Plaja L 2009 Opt. Express 17 9891

    [19]

    Jin C, Le A T, Lin C D 2011 Phys. Rev. A 83 023411

    [20]

    Austin D R, Biegert J 2012 Phys. Rev. A 86 023813

    [21]

    Auguste T, Catoire F, Agostini P, DiMauro L F, Chirila C C, Yakovlev V S, Salières P 2012 New J. Phys. 14 103014

    [22]

    Le A T, Wei H, Jin C, Tuoc V N, Morishita T, Lin C D 2014 Phys. Rev. Lett. 113 033001

    [23]

    Cui X, Li S Y, Guo F M, Tian Y Y, Chen J G, Zeng S L, Yang Y J 2015 Acta Phys. Sin. 64 043201(in Chinese) [崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军 2015 64 043201]

    [24]

    Shan B, Chang Z 2001 Phys. Rev. A 65 011804

    [25]

    Yu S J, Zhang B, Li Y P, Yang S P, Chen Y J 2014 Phys. Rev. A 90 053844

    [26]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007 Phys. Rev. Lett. 98 203901

    [27]

    Zhao D, Li F L 2013 Chin. Phys. B 22 064215

    [28]

    Feng L Q, Liu H 2015 Chin. Phys. B 24 034206

    [29]

    Diao H H, Zheng Y H, Zhong Y, Zeng Z N, Ge X C, Li C, Li R X, Xu Z Z 2014 Chin. Phys. B 23 104210

    [30]

    Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201

    [31]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguère M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902

    [32]

    Chen Y J, Zhang B 2011 Phys. Rev. A 84 053402

    [33]

    Zhang B, Chen Y J, Jiang X Q, Sun X D 2013 Phys. Rev. A 88 053428

    [34]

    Itatani J, Zeidler D, Levesque J, Spanner M, Villeneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902

    [35]

    Levesque J, Zeidler D, Marangos J P, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 183903

    [36]

    Patchkovskii S, Zhao Z, Brabec T, Villeneuve D M 2006 Phys. Rev. Lett. 97 123003

    [37]

    Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E, Marangos J P 2007 Phys. Rev. Lett. 98 203007

    [38]

    Le V H, Le A T, Xie R H, Lin C D 2007 Phys. Rev. A 76 013414

    [39]

    Chen Y J, Hu B 2009 J. Chem. Phys. 131 244109

    [40]

    Itatani J, Levesque J, Zeidler D, Hiromichi N, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [41]

    Chen Y J, Liu J 2008 Phys. Rev. A 77 013410

    [42]

    Chen Y J, Chen J, Liu J 2006 Phys. Rev. A 74 063405

  • [1] Zhang Chun-Yan. High-order harmonic platform extension and cluster expansion of H ion cluster. Acta Physica Sinica, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] Yu Shu-Juan, Liu Zhu-Qin, Li Yan-Peng. Ellipticity properties of symmetric molecules $ {\text{H}}_{\text{2}}^ + $ in strong and short-wavelength laser fields. Acta Physica Sinica, 2023, 72(4): 043101. doi: 10.7498/aps.72.20221946
    [3] Wei Bo-Ning, Jiao Zhi-Hong, Zhou Xiao-Xin. Frequency shiftand control ofhigh-order harmonicsof H atom driven by anasymmetric laser pulse. Acta Physica Sinica, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [4] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] Yao Hui-Dong, Cui Bo, Ma Si-Qi, Yu Chao, Lu Rui-Feng. Enhancing high harmonic generation in bilayer MoS2 by interlayer atomic dislocation. Acta Physica Sinica, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [6] Fan Xin, Liang Hong-Jing, Shan Li-Yu, Yan Bo, Gao Qing-Hua, Ma Ri, Ding Da-Jun. Extreme ultraviolet polarization vortex beam based on high harmonic generation. Acta Physica Sinica, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [7] Cai Huai-Peng1\2, Gao Jian1\2, Li Bo-Yuan1\2, Liu Feng1\2, Chen Li-Ming1\2\3, Yuan Xiao-Hui1\2, Chen Min1\2, Sheng Zheng-Ming1\2\4\5, Zhang Jie1\2\3High order harmonics generation by relativistically circularly polarized laser-solid interaction. Acta Physica Sinica, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [8] Li Xia-Zhi, Zou De-Bin, Zhou Hong-Yu, Zhang Shi-Jie, Zhao Na, Yu De-Yao, Zhuo Hong-Bin. Effect of plasma grating roughness on high-order harmonic generation. Acta Physica Sinica, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [9] Luo Xiang-Yi, Liu Hai-Feng, Ben Shuai, Liu Xue-Shen. Enhancement of high-order harmonic generation from H2+ in near plasmon-enhanced laser field. Acta Physica Sinica, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [10] Guan Zhong, Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Study of high-order harmonic generation in crystals exposed to laser fields. Acta Physica Sinica, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [11] Yu Chao, Sun Zhen-Rong, Guo Dong-Sheng. Guo-Åberg-Crasemann theory for high harmonic generation and its cutoff law. Acta Physica Sinica, 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [12] Chen Gao, Yang Yu-Jun, Guo Fu-Ming. Analysis on the cutoff frequency of high order harmonic generation in the crystal. Acta Physica Sinica, 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [13] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [14] Cui Lei, Wang Xiao-Juan, Wang Fan, Zeng Xiang-Hua. Effect of laser polarization direction on high order harmonic generation of oxygen molecule——A simulation via TDDFT. Acta Physica Sinica, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [15] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [16] Zhang Chun-Li, Qi Yue-Ying, Liu Xue-Shen, Ding Pei-Zhu. The enhancement of efficiency of high-order harmonic generation in two-color laser field. Acta Physica Sinica, 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [17] Cui Lei, Gu Bin, Teng Yu-Yong, Hu Yong-Jin, Zhao Jiang, Zeng Xiang-Hua. Effect of different laser polarization direction on high order harmonic generation of nitrogen molecule——A simulation via TDDFT. Acta Physica Sinica, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Redshift of harmonics by laser interaction with solid target. Acta Physica Sinica, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] Wang Da-Wei, Liu Ting-Ting, Yang Hong, Jiang Hong-Bin, Gong Qi-Huang. . Acta Physica Sinica, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [20] YU SHENG, LI HONG-FU, XIE ZHONG-LIAN, LUO YONG. A NONLINEAR SIMULATION ON BEAM-WAVE INTERACTION FOR HIGH-HARMONIC COMPLEX CAVITY GYROTRON WITH RADUAL TRANSITION. Acta Physica Sinica, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
Metrics
  • Abstract views:  5841
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2015
  • Accepted Date:  20 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map