Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The directional transport phenomenon in fractional logarithm coupled system under a non-periodic external force

Yang Jian-Qiang Ma Hong Zhong Su-Chuan

Citation:

The directional transport phenomenon in fractional logarithm coupled system under a non-periodic external force

Yang Jian-Qiang, Ma Hong, Zhong Su-Chuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using the fractional calculus theory, we investigate the directional transport phenomenon in a fractional logarithm coupled system under the action of a non-periodic external force. When a Brownian particle moves in the media with memory such as viscoelastic media, the system should be modeled as a nonlinear fractional logarithm coupled one. Using the method of fractional difference, we can solve the model numerically and discuss the influences of the various system parameters on the average transport velocity of the particles. Numerical results show that: 1) The directional transport phenomenon in this fractional logarithmic coupled model appears only when the external force exists, and the value of the average transport velocity of the particles increases with increasing external force. 2) When the fractional order of the system is small enough, the damping memory has a significant impact on the average transport velocity of the particles. Furthermore, the average transport velocity of the particles has an upper bound (although it is very small), no matter how the external force, coupled force and the intensity of noise change, the average transport velocity of the particles is no more than the upper bound. When there is no external force and the damping force is big enough, the directional transport phenomenon disappears. 3) When the fractional order of the system and the external force are big enough, although the directional transport phenomenon appears, the coupled force and the intensity of noise have no impact on the system. 4) Only when the external force is small enough, could the coupled force and noise intensity influence the average transport velocity of the particles. In this situation, the directional transport phenomenon appears when the fractional order of the system is big enough, and the average transport velocity of the particles changes along with the change of the coupled force and the noise intensity.
      Corresponding author: Zhong Su-Chuan, zsczsc48@hotmail.com
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant No. 11471229), and the Young Teacher Fund of Sichuan Uninversity, China (Grant No. 2082604174031).
    [1]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [2]

    Barbi M, Salerno M 2000 Phys. Rev. E 62 1988

    [3]

    Zheng Z G, Hu G, Hu B B 2001 Phys. Rev. Lett. 86 2273

    [4]

    Hanggi P, Marchesoni F 2009 Rev. Mod. Phy. 81 387

    [5]

    Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear System (Beijing: Higher Education Press) [郑志刚 2004 耦合非线性动力系统的时空动力学与合作行为 (北京:高等教育出版社)]

    [6]

    Machura L, Kostur M, Luczka J 2010 Chem Phys. 375 445

    [7]

    Mielke A 2000 Phys. Rev. Lett. 84 818

    [8]

    Guerin T, Prost J, Martin P 2010 Current Opinnion in Cell Biology 22 14

    [9]

    Chen H B, Zheng Z G 2012 J. Univ. Shanghai Sci. Technol. 346 (in Chinese) [陈宏斌, 郑志刚 2012 上海理工大学学报 346]

    [10]

    Lipowsky R, Klumpp S, Nieuwenhuizen T M 2001 Phys. Rev. Lett. 87 108101

    [11]

    Downton M T, Zuchermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909

    [12]

    Kumar K V, Ramaswamy S, Rao M 2008 Phys. Rev. E 77 020102

    [13]

    Fendrik A J, Romanelli L, Reale M V 2012 Phys. Rev. E 85 041149

    [14]

    Savel E S, Marchesoni F, Nori F 2003 Phys. Rev. Lett. 91 10601

    [15]

    Veigel C, Schmidt C F 2011 Nat. Rev. Mol. Cel. Biol. 12 163

    [16]

    Ai B Q, He Y F, Zhong W R 2010 Phys. Rev. E 82 061102

    [17]

    Ernst D, Hellmann M, Kohler J, Weiss M 2012 Soft. Matter. Comput. 8 4886

    [18]

    Tu Z, Lai L, Luo M K2014 Acta Phys. Sin. 63 120503 in Chinese 2014 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 63 120503]

    [19]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 62 040501]

    [20]

    Liu F, Anh V V, Turner I, Zhuang p 2003 J. Appl. Math. Comp. 13 233

    [21]

    Benson D A, Wheatcraft S W, Meerschaert M M 2000 Water Resour. Pes. 36 1403

    [22]

    Zhang L, Deng K, Luo M K 2012 Chin. Phys. B 21 090505

    [23]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 62 240501]

    [24]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651

    [25]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation (Beijing: Science Press) (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京:科学出版社)]

    [26]

    Podlubny I 1998 Fractional Differential Equation (San Diego: Academic Press)

  • [1]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [2]

    Barbi M, Salerno M 2000 Phys. Rev. E 62 1988

    [3]

    Zheng Z G, Hu G, Hu B B 2001 Phys. Rev. Lett. 86 2273

    [4]

    Hanggi P, Marchesoni F 2009 Rev. Mod. Phy. 81 387

    [5]

    Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear System (Beijing: Higher Education Press) [郑志刚 2004 耦合非线性动力系统的时空动力学与合作行为 (北京:高等教育出版社)]

    [6]

    Machura L, Kostur M, Luczka J 2010 Chem Phys. 375 445

    [7]

    Mielke A 2000 Phys. Rev. Lett. 84 818

    [8]

    Guerin T, Prost J, Martin P 2010 Current Opinnion in Cell Biology 22 14

    [9]

    Chen H B, Zheng Z G 2012 J. Univ. Shanghai Sci. Technol. 346 (in Chinese) [陈宏斌, 郑志刚 2012 上海理工大学学报 346]

    [10]

    Lipowsky R, Klumpp S, Nieuwenhuizen T M 2001 Phys. Rev. Lett. 87 108101

    [11]

    Downton M T, Zuchermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909

    [12]

    Kumar K V, Ramaswamy S, Rao M 2008 Phys. Rev. E 77 020102

    [13]

    Fendrik A J, Romanelli L, Reale M V 2012 Phys. Rev. E 85 041149

    [14]

    Savel E S, Marchesoni F, Nori F 2003 Phys. Rev. Lett. 91 10601

    [15]

    Veigel C, Schmidt C F 2011 Nat. Rev. Mol. Cel. Biol. 12 163

    [16]

    Ai B Q, He Y F, Zhong W R 2010 Phys. Rev. E 82 061102

    [17]

    Ernst D, Hellmann M, Kohler J, Weiss M 2012 Soft. Matter. Comput. 8 4886

    [18]

    Tu Z, Lai L, Luo M K2014 Acta Phys. Sin. 63 120503 in Chinese 2014 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 63 120503]

    [19]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 62 040501]

    [20]

    Liu F, Anh V V, Turner I, Zhuang p 2003 J. Appl. Math. Comp. 13 233

    [21]

    Benson D A, Wheatcraft S W, Meerschaert M M 2000 Water Resour. Pes. 36 1403

    [22]

    Zhang L, Deng K, Luo M K 2012 Chin. Phys. B 21 090505

    [23]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 62 240501]

    [24]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651

    [25]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation (Beijing: Science Press) (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京:科学出版社)]

    [26]

    Podlubny I 1998 Fractional Differential Equation (San Diego: Academic Press)

  • [1] Yang Shuo-Ying, Yin Jia-Xin. Transport phenomena in time-reversal symmetry-breaking Kagome superconductors. Acta Physica Sinica, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [2] Xu Peng-Fei, Gong Xu-Lu, Li Yi-Wei, Jin Yan-Fei. Stochastic resonance in periodic potential system with memory damping function. Acta Physica Sinica, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [3] Peng Hao, Ren Rui-Bin, Zhong Yang-Fan, Yu Tao. Stochastic resonance of fractional-order coupled system excited by trichotomous noise. Acta Physica Sinica, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [4] Research on Stochastic Resonance of Fractional-Order Coupled System Excited by Trichotomous Noise. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211272
    [5] Yang Jian-Hua, Ma Qiang, Wu Cheng-Jin, Liu Hou-Guang. A periodic vibrational resonance in the fractional-order bistable system. Acta Physica Sinica, 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [6] Liu Xiao-Jun, Hong Ling, Jiang Jun. Crises in a non-autonomous fractional-order Duffing system. Acta Physica Sinica, 2016, 65(18): 180502. doi: 10.7498/aps.65.180502
    [7] Li Shuang, Li Qian, Li Jiao-Rui. Mechanism for the coexistence phenomenon of random phase suppressing chaos and stochastic resonance in Duffing system. Acta Physica Sinica, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [8] Liu De-Hao, Ren Rui-Bin, Yang Bo, Luo Mao-Kang. Chaotic transport of fractional over-damped ratchet with fluctuation and periodic drive. Acta Physica Sinica, 2015, 64(22): 220501. doi: 10.7498/aps.64.220501
    [9] Ren Rui-Bin, Liu De-Hao, Wang Chuan-Yi, Luo Mao-Kang. Directed transport of fractional Brownian motor driven by a temporal asymmetry force. Acta Physica Sinica, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [10] Qin Tian-Qi, Wang Fei, Yang Bo, Luo Mao-Kang. Transport properties of fractional coupled Brownian motors in ratchet potential with feedback. Acta Physica Sinica, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [11] Xie Wen-Xian, Li Dong-Ping, Xu Peng-Fei, Cai Li, Jin Yan-Fei. Stochastic resonance of a memorial-damped linear system with natural frequency fluctuation. Acta Physica Sinica, 2014, 63(10): 100502. doi: 10.7498/aps.63.100502
    [12] Ji Yuan-Dong, Zhang Lu, Luo Mao-Kang. Generalized stochastic resonance of power function type single-well system. Acta Physica Sinica, 2014, 63(16): 164302. doi: 10.7498/aps.63.164302
    [13] Tu Zhe, Lai Li, Luo Mao-Kang. Directional transport of fractional asymmetric coupling system in symmetric periodic potential. Acta Physica Sinica, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [14] Wang Fei, Xie Tian-Ting, Deng Cui, Luo Mao-Kang. Influences of the system symmetry and memory on the transport behavior of Brownian motor. Acta Physica Sinica, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [15] Lin Li-Feng, Zhou Xing-Wang, Ma Hong. Subdiffusive transport of fractional two-headed molecular motor. Acta Physica Sinica, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [16] Lai Li, Zhou Xue-Xue, Ma Hong, Luo Mao-Kang. Transport properties of fractional coupled Brownian motors in flash ratchet potential. Acta Physica Sinica, 2013, 62(15): 150502. doi: 10.7498/aps.62.150502
    [17] Wang Fei, Deng Cui, Tu Zhe, Ma Hong. Transport of fractional coupled Brownian motor in asymmetric periodic potential. Acta Physica Sinica, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [18] Gao Shi-Long, Zhong Su-Chuan, Wei Kun, Ma Hong. Overdamped fractional Langevin equation and its stochastic resonance. Acta Physica Sinica, 2012, 61(10): 100502. doi: 10.7498/aps.61.100502
    [19] Bai Wen-Si-Mi, Peng Hao, Tu Zhe, Ma Hong. Fractional Brownian motor and its directed transport. Acta Physica Sinica, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [20] Lin Min, Huang Yong-Mei, Fang Li-Min. The stochastic resonance control of coupled bistable systems. Acta Physica Sinica, 2008, 57(4): 2048-2052. doi: 10.7498/aps.57.2048
Metrics
  • Abstract views:  6043
  • PDF Downloads:  225
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2015
  • Accepted Date:  22 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map