Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic Tamm states of metamaterial-like semiconductor composite structures

Wu Zhi-Zheng Yu Kun Guo Zhi-Wei Li Yun-Hui Jiang Hai-Tao

Citation:

Electronic Tamm states of metamaterial-like semiconductor composite structures

Wu Zhi-Zheng, Yu Kun, Guo Zhi-Wei, Li Yun-Hui, Jiang Hai-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In a semi-infinite crystal, the periodic potential is destroyed at the surface, and the electronic wave functions exponentially decay from the surface to both sides. Such localized electronic states in the vicinity of the surface are known as Tamm surface states. In analogy to the electronic Tamm states, in recent years, optical Tamm states have been found at the surface of the truncated photonic crystal composed of two kinds of dielectrics. Very recently, novel types of optical Tamm states including backward Tamm states in which the phase velocity and the group velocity of optical waves are in the opposite direction have been discovered in the photonic structures containing metamaterials. In fact, the concepts in electronic field and photonic field can inspire each other. Many unique phenomena in photonic systems can also be mapped to the electronic systems. In this paper, we study the novel types of electronic Tamm states in electronic systems, inspired by the novel types of optical Tamm states in photonic structures. #br#At first, comparing Maxwell equations with Schrodinger equations, one can see a correspondence between the parameters in electromagnetic system and the parameters in the electronic system. In particular, Hg1-xCdxTe semiconductors with special electronic band structures can realize various electronic materials in analogy to the optical metamaterials with various values of permittivity and permeability. By tuning the parameter x of Hg1-xCdxTe, we obtain a variety of metamaterial-like electronic materials, in analogy to the single-negative metamaterials, the double-negative metamaterials and the near-zero-index metamaterials in optical systems. Then, inspired by the one-dimensional heterostructures with metamaterials that generate optical Tamm states, we design a one-dimensional electronic heterostructure consisting of Hg0.847Cd0.153Te and CdTe/HgTe superlattice. When Hg0.847Cd0.153Te is analogous to the double-negative metamaterial, we find the backward electronic Tamm states in which the phase velocity and the group velocity of electronic waves are in the opposite directions. When Hg0.847Cd0.153Te is analogous to the near-zero-index metamaterial, we find a novel electronic Tamm states in which the amplitude of the electronic probability decays very slowly in Hg0.847Cd0.153Te. The discovery of these new types of electronic Tamm states enlarges our knowledge of electronic surface states.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001), the National Natural Science Foundation of China (Grant Nos. 11234010, 11074187), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 14ZZ040), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Tamm I Y 1932 Phys. Z. Sowjetunion 1 733

    [2]

    Ohno H, Mendez E E, Brum J A, Hong J M, Agulló R F, Chang L L, Esaki L 1990 Phys. Rev. Lett. 64 2555

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    John S 1987 Phys. Rev. Lett. 58 2486

    [5]

    Yeh P, Yariv A, Cho A Y 1978 Appl. Phys. Lett. 32 104

    [6]

    Yeh P 1988 Optical Waves in Layered Media (New York: Wiley) pp337-344

    [7]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [8]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [9]

    Pendry J B, Holden A J, Robbins D J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [10]

    Monticone F, Alù A 2014 Chin. Phys. B 23 047809

    [11]

    Martorell J, Sprung D W L, Morozov G V 2006 Pure Appl. Opt. 8 630

    [12]

    Malkova N, Ning C Z 2006 Phys. Rev. B 73 113113

    [13]

    Namdar A, Shadrivov I V, Kivshar Y S 2007 Phys. Rev. A 75 053812

    [14]

    Cheianov V V, Vladimir F, Altshuler B L 2007 Science 315 1252

    [15]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [16]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [17]

    Zandbergen S R, Michiel J A 2010 Phys. Rev. Lett. 104 043903

    [18]

    Jelinek L, Baena J D, Voves J, Marquesn R 2011 New J. Phys. 13 083011

    [19]

    Kane E O 1957 J. Phys. Chem. Sol. 1 249

    [20]

    Bastard G 1988 Wave Mechanics Applied to Semiconductor Heterostructures (New York: Wiley) pp41-48

    [21]

    Kowalczyk S P, Cheng J T, Kraut E A 1986 Phys. Rev. Lett. 56 1605

    [22]

    Johnson N F, Hui P M, Ehrenreich H 1988 Phys. Rev. Lett. 61 1993

    [23]

    Mecabih L, Amrane N, Belgoumene B 2000 Physica A 276 495

    [24]

    Yu Y F, Lu C, Wei L Y, Lin S 2012 Chin. Phys. B 21 017804

    [25]

    Jiang H T, Chen H, Li H Q, Zhang Y W 2004 Phys. Rev. E 69 066607

  • [1]

    Tamm I Y 1932 Phys. Z. Sowjetunion 1 733

    [2]

    Ohno H, Mendez E E, Brum J A, Hong J M, Agulló R F, Chang L L, Esaki L 1990 Phys. Rev. Lett. 64 2555

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    John S 1987 Phys. Rev. Lett. 58 2486

    [5]

    Yeh P, Yariv A, Cho A Y 1978 Appl. Phys. Lett. 32 104

    [6]

    Yeh P 1988 Optical Waves in Layered Media (New York: Wiley) pp337-344

    [7]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [8]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [9]

    Pendry J B, Holden A J, Robbins D J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [10]

    Monticone F, Alù A 2014 Chin. Phys. B 23 047809

    [11]

    Martorell J, Sprung D W L, Morozov G V 2006 Pure Appl. Opt. 8 630

    [12]

    Malkova N, Ning C Z 2006 Phys. Rev. B 73 113113

    [13]

    Namdar A, Shadrivov I V, Kivshar Y S 2007 Phys. Rev. A 75 053812

    [14]

    Cheianov V V, Vladimir F, Altshuler B L 2007 Science 315 1252

    [15]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [16]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [17]

    Zandbergen S R, Michiel J A 2010 Phys. Rev. Lett. 104 043903

    [18]

    Jelinek L, Baena J D, Voves J, Marquesn R 2011 New J. Phys. 13 083011

    [19]

    Kane E O 1957 J. Phys. Chem. Sol. 1 249

    [20]

    Bastard G 1988 Wave Mechanics Applied to Semiconductor Heterostructures (New York: Wiley) pp41-48

    [21]

    Kowalczyk S P, Cheng J T, Kraut E A 1986 Phys. Rev. Lett. 56 1605

    [22]

    Johnson N F, Hui P M, Ehrenreich H 1988 Phys. Rev. Lett. 61 1993

    [23]

    Mecabih L, Amrane N, Belgoumene B 2000 Physica A 276 495

    [24]

    Yu Y F, Lu C, Wei L Y, Lin S 2012 Chin. Phys. B 21 017804

    [25]

    Jiang H T, Chen H, Li H Q, Zhang Y W 2004 Phys. Rev. E 69 066607

  • [1] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] Luo Quan-Bin, Huang Xue-Qin, Deng Wei-Yin, Wu Ying, Lu Jiu-Yang, Liu Zheng-You. Type-II Dirac points and edge transports in phononic crystal plates. Acta Physica Sinica, 2021, 70(18): 184302. doi: 10.7498/aps.70.20210712
    [3] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [4] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [5] Xu Guo-Qing, Liu Xiang-Yang, Zhang Ke-Feng, Du Yun-Chen, Li Xiang-Yang. Study on electrical properties of ion-beam-etched HgCdTe crystal. Acta Physica Sinica, 2015, 64(11): 116102. doi: 10.7498/aps.64.116102
    [6] Zhang Shan, Hu Xiao-Ning. Deep levels of HgCdTe diodes on Si substrates. Acta Physica Sinica, 2011, 60(6): 068502. doi: 10.7498/aps.60.068502
    [7] Yin Fei, Hu Wei-Da, Quan Zhi-Jue, Zhang Bo, Hu Xiao-Ning, Li Zhi-Feng, Chen Xiao-Shuang, Lu Wei. Determination of electron diffusion length in HgCdTe photodiodes using laser beam induced current. Acta Physica Sinica, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [8] Cui Hao-Yang, Li Zhi-Feng, Li Ya-Jun, Liu Zhao-Lin, Chen Xiao-Shuang, Lu Wei, Ye Zhen-Hua, Hu Xiao-Ning, Wang Chong. Franz-Keldysh effect in two-photon absorption. Acta Physica Sinica, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [9] Qiao Hui, Liao Yi, Hu Wei-Da, Deng Yi, Yuan Yong-Gang, Zhang Qin-Yao, Li Xiang-Yang, Gong Hai-Mei. Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes. Acta Physica Sinica, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [10] Yue Fang-Yu, Shao Jun, Wei Yan-Feng, Lü Xiang, Huang Wei, Yang Jian-Rong, Chu Jun-Hao. Temperature-dependent absorption spectra investigation of shallow levels in HgCdTe grown by liquid phase epitaxy. Acta Physica Sinica, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [11] Quan Zhi-Jue, Sun Li-Zhong, Ye Zhen-Hua, Li Zhi-Feng, Lu Wei. Optimization design of the band profiles of HgCdTe heterojunctions. Acta Physica Sinica, 2006, 55(7): 3611-3616. doi: 10.7498/aps.55.3611
    [12] Sun Li-Zhong, Chen Xiao-Shuang, Zhou Xiao-Hao, Sun Yan-Lin, Quan Zhi-Jue, Lu Wei. First-principles calculations on the mercury vacancy in Hg050.5 Cd050.5Te. Acta Physica Sinica, 2005, 54(4): 1756-1761. doi: 10.7498/aps.54.1756
    [13] Huang Yang-Cheng, Liu Da-Fu, Liang Jin-Sui, Gong Hai-Mei. Low frequency noise study on short wavelength HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
    [14] Li Yi, Yi Xin-jian, Cai Li-ping. Study on the Oxidative Characterization of Lpe HgCdTe Film Surface by XPS . Acta Physica Sinica, 2000, 49(1): 132-136. doi: 10.7498/aps.49.132
    [15] LIU JIA-LU, ZHANG TING-QING, LUO HONG-WEI, YAN BEI-PING, LANG WEI-HE, ZHANG BAO-FENG. NUMERICAL SIMULATION OF THE GROWTH OF Hg1-xCdxTe CRYSTAL BY THE TELLURIUM SOLVENT METHOD. Acta Physica Sinica, 1998, 47(2): 275-285. doi: 10.7498/aps.47.275
    [16] GONG HAI-MEI, LI YAN-JIN, FANG JIA-XIONG. A NEW METHOD OF SURFACE PASSIVATION FOR MERCURY CADMIUM TELLURIDE. Acta Physica Sinica, 1997, 46(7): 1400-1405. doi: 10.7498/aps.46.1400
    [17] Yan Bei-Peng, Liu Jia-Lu, Zhang Ting-Qing, Wang Chao-Dong, Liang Wei-He, Zhang Bao-Feng. . Acta Physica Sinica, 1995, 44(3): 439-445. doi: 10.7498/aps.44.439
    [18] HUANG HE, TANG DING-YUAN, TONG FEI-MING, ZHENG GUO-ZHEN. DYNAMIC STORAGE TIME MEASUREMENTS OF N-TYPE Hg1-xCdxTe METAL-INSULATOR-SEMICONDUCTOR DEVICES. Acta Physica Sinica, 1994, 43(11): 1883-1888. doi: 10.7498/aps.43.1883
    [19] SONG XIANG-YUN, WEN SHU-LIN. MICROCRYSTALLOGRAPHICAL PROCESS OF RADIATION DAMAGE IN Hg1-xCdx Te. Acta Physica Sinica, 1988, 37(2): 301-304. doi: 10.7498/aps.37.301
    [20] MA KE-JUN, SHEN JIE, SONG XIANG-YUN, WEN SHU-LIN. THE LATTICE IMAGE OF THE DEFECTS IN Hg1-xCdxTe CRYSTALS. Acta Physica Sinica, 1985, 34(12): 1641-1643. doi: 10.7498/aps.34.1641
Metrics
  • Abstract views:  6275
  • PDF Downloads:  507
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2014
  • Accepted Date:  25 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map