搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种混沌海杂波背景下的微弱信号检测方法

行鸿彦 朱清清 徐伟

引用本文:
Citation:

一种混沌海杂波背景下的微弱信号检测方法

行鸿彦, 朱清清, 徐伟

A method of weak target detection based on the sea clutter

Xing Hong-Yan, Zhu Qing-Qing, Xu Wei
PDF
导出引用
  • 基于复杂非线性系统的相空间重构理论,提出了一种基于遗传算法的支持向量机预测方法. 利用改进的自相关法和饱和关联维数法确定混沌信号的时间延迟和嵌入维,从而实现相空间重构. 通过遗传算法优化支持向量机中的惩罚系数和核函数参数,并结合支持向量机建立混沌序列的单步预测模型,从预测误差中检测出淹没在混沌背景中的微弱信号(包括瞬态信号和周期信号). 以Lorenz系统和加拿大McMaster大学利用IPIX 雷达实测得到的海杂波数据作为混沌背景噪声进行仿真实验,结果表明该方法能够有效地从混沌背景噪声中检测出微弱目标信号,所得的均方根误差为0.00049521(信噪比为-89.7704 dB),这比传统支持向量机方法的均方根误差(0.049,信噪比为-54.60 dB)降低了两个数量级.
    According to the phase space reconstruction theory of nonlinear system, we propose a prediction method of support vector machine based on genetic algorithm. Using the improved autocorrelation method and Grassberger-Procaccia algorithm to determine the time delay and embedding dimension of chaotic signal, the phase space reconstruction is implemented. The penalty coefficient and the kernel function parameter of support vector machine are optimized by genetic algorithm. Combined with support vector machine, single-step prediction model of the chaotic sequence is set up, so we can detect the weak signal in chaos from the prediction error (including the transient signal and periodic signal). Lorenz attractor and the data from the McMaster IPIX radar sea clutter database are used in the simulation. The proposed method can effectively detect the weak target from chaotic signal. When the signal-to-noise ratio is -89.7704 dB in the chaotic noise background, by using the new method the root mean square error can be reduced by two orders of magnitude, reaching 0.00049521, while the conventional support vector machine can reach only 0.049 under the condition of -54.60 dB.
    • 基金项目: 国家自然科学基金(批准号:61072133)、江苏省产学研联合创新计划(批准号:BY2013007-02,BY2011112)、江苏省高等学校科研成果产业化推进计划(批准号:JHB2011-15)和江苏省“六大人才高峰”计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072133), the Production, Learning and Research Joint Innovation Program of Jiangsu Province, China (Grant Nos. BY2013007-02, BY2011112), the Industrialization of Research Findings Promotion Program of Institution of Higher Education of Jiangsu Province, China (Grant No. JHB2011-15), and the “Summit of the Six Top Talents” Program of Jiangsu Province, China.
    [1]

    Zhang X D, Wang Z, Zhao P D 2008 Chin. Phys. Lett. 25 397

    [2]

    Leung H, Haykin S 1990 Appl. Phys. Lett. 56 593

    [3]

    Szajnowski W J 1976 Electron. Lett. 12 497

    [4]

    Anastassopoulos V, Lampropulos G 1995 IEEE Trans. AES 31 52

    [5]

    Conte E, Lops M, Ricci G 1994 IEE Proc. F 141 116

    [6]

    Zhang X G 2000 Acta Autom. Sin. 26 32 (in Chinese) [张学工 2000 自动化学报 26 32]

    [7]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2005 Chin. Phys. 14 922

    [8]

    Leung H, Lo T 1993 IEEE J. Oceanic Eng. 18 287

    [9]

    Mukherjee S, Osuna E, Girosi F 1997 Workshop on Neural Networks for Signal Processing VII (Piscataway: IEEE Press) p511

    [10]

    Haykin S, Bakker R, Currie B W 2002 Proc. IEEE 90 860

    [11]

    Kenshi S, Yuko N, Shinichi A 2008 Chaos Solitons Fract. 38 1274

    [12]

    Zhu J Y, Ren B, Zhang H X, Deng Z T 2002 Proceedings of the First International Conference on Machine Learning and Cybernetics Beijing, China, November 4, 5, 2002 p364

    [13]

    Dai D, Ma X K, Li F C, You Y 2002 Acta Phys. Sin. 51 2459 (in Chinese) [戴栋, 马西奎, 李富才, 尤勇 2002 51 2459]

    [14]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2004 53 3303]

    [15]

    You R Y, Chen Z, Xu S C, Wu B X 2004 Acta Phys. Sin. 53 2882 (in Chinese) [游荣义, 陈忠, 徐慎初, 吴伯僖 2004 53 2882]

    [16]

    Ye M Y, Wang X D, Zhang H R 2005 Acta Phys. Sin. 54 2568 (in Chinese) [叶美盈, 汪晓东, 张浩然 2005 54 2568]

    [17]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3773 (in Chinese) [行鸿彦, 徐伟 2007 56 3773]

    [18]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 140 (in Chinese) [行鸿彦, 金天力 2010 59 140]

    [19]

    Packard N H, Cratchfield J P, Farmer J D, Shaw R S 1980 Phys. Rev. Lett. 45 712

    [20]

    Xing H Y, Cheng Y Y, Xu W 2012 Acta Phys. Sin. 61 100506 (in Chinese) [行鸿彦, 程艳艳, 徐伟 2012 61 100506]

    [21]

    You R Y, Huang X J 2011 Chin. Phys. B 20 020505

    [22]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [23]

    Lo T, Leung H 1993 IEE Proc. F 140 243

    [24]

    Aguirre L A 1995 Phys. Lett. A 203 88

    [25]

    Ma Q L, Zheng Q L, Peng H, Zhong T W, Qin J W 2008 Chin. Phys. B 17 536

    [26]

    Wang Y N, Tan W 2003 Acta Phys. Sin. 52 2723 (in Chinese) [王耀南, 谭文 2003 52 2723]

    [27]

    Du J Y, Hou Y B 2007 J. Sci. Instrum. 28 555 (in Chinese) [杜京义, 侯媛彬 2007 仪器仪表学报 28 555]

    [28]

    Wang F Y, Yuan G N, Xie Y J, Qiao X W 2009 Radar Sci. Technol. 7 53 (in Chinese) [王福友, 袁赣南, 谢燕军, 乔相伟 2009 雷达科学与技术 7 53]

  • [1]

    Zhang X D, Wang Z, Zhao P D 2008 Chin. Phys. Lett. 25 397

    [2]

    Leung H, Haykin S 1990 Appl. Phys. Lett. 56 593

    [3]

    Szajnowski W J 1976 Electron. Lett. 12 497

    [4]

    Anastassopoulos V, Lampropulos G 1995 IEEE Trans. AES 31 52

    [5]

    Conte E, Lops M, Ricci G 1994 IEE Proc. F 141 116

    [6]

    Zhang X G 2000 Acta Autom. Sin. 26 32 (in Chinese) [张学工 2000 自动化学报 26 32]

    [7]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2005 Chin. Phys. 14 922

    [8]

    Leung H, Lo T 1993 IEEE J. Oceanic Eng. 18 287

    [9]

    Mukherjee S, Osuna E, Girosi F 1997 Workshop on Neural Networks for Signal Processing VII (Piscataway: IEEE Press) p511

    [10]

    Haykin S, Bakker R, Currie B W 2002 Proc. IEEE 90 860

    [11]

    Kenshi S, Yuko N, Shinichi A 2008 Chaos Solitons Fract. 38 1274

    [12]

    Zhu J Y, Ren B, Zhang H X, Deng Z T 2002 Proceedings of the First International Conference on Machine Learning and Cybernetics Beijing, China, November 4, 5, 2002 p364

    [13]

    Dai D, Ma X K, Li F C, You Y 2002 Acta Phys. Sin. 51 2459 (in Chinese) [戴栋, 马西奎, 李富才, 尤勇 2002 51 2459]

    [14]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2004 53 3303]

    [15]

    You R Y, Chen Z, Xu S C, Wu B X 2004 Acta Phys. Sin. 53 2882 (in Chinese) [游荣义, 陈忠, 徐慎初, 吴伯僖 2004 53 2882]

    [16]

    Ye M Y, Wang X D, Zhang H R 2005 Acta Phys. Sin. 54 2568 (in Chinese) [叶美盈, 汪晓东, 张浩然 2005 54 2568]

    [17]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3773 (in Chinese) [行鸿彦, 徐伟 2007 56 3773]

    [18]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 140 (in Chinese) [行鸿彦, 金天力 2010 59 140]

    [19]

    Packard N H, Cratchfield J P, Farmer J D, Shaw R S 1980 Phys. Rev. Lett. 45 712

    [20]

    Xing H Y, Cheng Y Y, Xu W 2012 Acta Phys. Sin. 61 100506 (in Chinese) [行鸿彦, 程艳艳, 徐伟 2012 61 100506]

    [21]

    You R Y, Huang X J 2011 Chin. Phys. B 20 020505

    [22]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [23]

    Lo T, Leung H 1993 IEE Proc. F 140 243

    [24]

    Aguirre L A 1995 Phys. Lett. A 203 88

    [25]

    Ma Q L, Zheng Q L, Peng H, Zhong T W, Qin J W 2008 Chin. Phys. B 17 536

    [26]

    Wang Y N, Tan W 2003 Acta Phys. Sin. 52 2723 (in Chinese) [王耀南, 谭文 2003 52 2723]

    [27]

    Du J Y, Hou Y B 2007 J. Sci. Instrum. 28 555 (in Chinese) [杜京义, 侯媛彬 2007 仪器仪表学报 28 555]

    [28]

    Wang F Y, Yuan G N, Xie Y J, Qiao X W 2009 Radar Sci. Technol. 7 53 (in Chinese) [王福友, 袁赣南, 谢燕军, 乔相伟 2009 雷达科学与技术 7 53]

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面.  , 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] 行鸿彦, 张强, 徐伟. 海杂波FRFT域的分形特征分析及小目标检测方法.  , 2015, 64(11): 110502. doi: 10.7498/aps.64.110502
    [3] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法.  , 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [4] 熊刚, 张淑宁, 赵慧昌. 基于小波leaders的海杂波时变奇异谱分布分析.  , 2014, 63(15): 150503. doi: 10.7498/aps.63.150503
    [5] 于洋, 郝中骐, 李常茂, 郭连波, 李阔湖, 曾庆栋, 李祥友, 任昭, 曾晓雁. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究.  , 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [6] 王芳芳, 张业荣. 基于支持向量机的电磁逆散射方法.  , 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [7] 刘宁波, 关键, 黄勇, 王国庆, 何友. 海杂波的分段分数布朗运动模型.  , 2012, 61(19): 190503. doi: 10.7498/aps.61.190503
    [8] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法.  , 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [9] 行鸿彦, 程艳燕, 徐伟. 基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测.  , 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [10] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测.  , 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [11] 张春涛, 马千里, 彭宏, 姜友谊. 基于条件熵扩维的多变量混沌时间序列相空间重构.  , 2011, 60(2): 020508. doi: 10.7498/aps.60.020508
    [12] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法.  , 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [13] 宋丹, 张晓林. 基于不动点理论的多系统兼容接收机频点选择问题的研究与遗传算法实现.  , 2010, 59(9): 6697-6705. doi: 10.7498/aps.59.6697
    [14] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测.  , 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [15] 丛 蕊, 刘树林, 马 锐. 基于数据融合的多变量相空间重构方法.  , 2008, 57(12): 7487-7493. doi: 10.7498/aps.57.7487
    [16] 肖方红, 阎桂荣, 韩宇航. 混沌时序相空间重构参数确定的信息论方法.  , 2005, 54(2): 550-556. doi: 10.7498/aps.54.550
    [17] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制.  , 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [18] 崔万照, 朱长纯, 保文星, 刘君华. 基于模糊模型支持向量机的混沌时间序列预测.  , 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [19] 崔万照, 朱长纯, 保文星, 刘君华. 混沌时间序列的支持向量机预测.  , 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
    [20] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究.  , 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
计量
  • 文章访问数:  6842
  • PDF下载量:  768
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-17
  • 修回日期:  2014-01-06
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map