-
In this paper, the site occupations of H under different mole ratios in interstitials of α -Fe and γ -Fe are studied by the first principles method based on the density functional theory. The total energy of the steady state crystal, binding energy, solution heat, density of states, charge density difference and charge population are calculated. The interaction between interstitial H and Fe lattice is analyzed. The influences of hydrogen dissolution on electronic structure of α -Fe and γ -Fe are discussed. The results show that the dissolved hydrogen leads to the lattice distortions of α -Fe and γ -Fe, and the volume expansion ratio increases with the dissolved quantity of hydrogen increasing. The energy analysis indicates that the hydrogen preferentially occupies the tetrahedral interstitial of α -Fe, while in the γ-Fe it preferentially occupies the octahedral interstitial. The analyses of density state, charge density difference and charge population reveal that the interaction between interstitial hydrogen and Fe lattice is contributed by the H 1s orbital and Fe 4s orbital, and this interaction is relatively weak, which is one of the main reasons for lower solid solubility of hydrogen in Fe lattice.
-
Keywords:
- metal Fe /
- interstitials hydrogen atom /
- first principles /
- solution heat
[1] Yang Z K 1984 Chem. Industry and Refining Mach. 13 5 (in Chinese) [杨志康 1984 化工炼油机械 13 5]
[2] Wan X J 1979 J. Mater. Protect. Z1 11 (in Chinese) [万晓景 1979 材料保护 Z1 11]
[3] Chu W Y 1988 Hydrogen Damage and Delayed Fracture (Beijing: Metallurgical Industry Press) (in Chinese) [褚武扬 1988 氢损伤与滞后断裂 (北京: 冶金工业出版社)]
[4] Martin A S Manchester F D 1990 Bull. Alloy Phase Diagrams 11 173
[5] Lee B J, Jang J W 2007 Acta Mater. 55 6779
[6] Fukai Y 1983 Jpn. J. Appl. Phys. 22 207
[7] Yang Z J 1966 Acta Phys. Sin. 22 294 (in Chinese) [杨正举 1966 22 294]
[8] Paxton A T, Elsässer C 2010 Phys. Rev. B 82 1
[9] Jiang D E, Carter E A 2004 Phys. Rev. B 70 064102
[10] Hayward E, Deo C 2011 J. Phys.: Condens. Matter 23 425402
[11] Simonetti S, Saravia D R, Brizuela G, Juan A 2010 Int. J. Hydrogen Energy 35 5957
[12] Payne M C, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[13] Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895
[14] White J A, Bird D M 1994 Phys. Rev. B 50 4954
[15] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Zhang Y, Yang W 1998 Phys Rev. Lett. 80 890
[17] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[18] Jiang D E, Carter E A 2005 Surf. Sci. 583 60
[19] Seki I, Nagata K 2005 ISIJ Int. 45 1789
[20] Zhang J J, Zhang H 2010 Acta Phys. Sin. 59 4143 (in Chinese) [张建军, 张红 2010 59 4143]
[21] Zhang S, Qin Y, Ma M F, Lu C, Li G Q 2014 Chin. Phys. B 23 013601
[22] Cheng D D, Kuang X Y, Zhao Y R, Shao P, Li Y F 2011 Chin. Phys. B 20 063601
[23] Bozzolo G, Ferrante J 1992 Phys. Rev. B: Condens. Matter 46 8600
[24] Troiano A R 1960 Trans. ASM 52 54
-
[1] Yang Z K 1984 Chem. Industry and Refining Mach. 13 5 (in Chinese) [杨志康 1984 化工炼油机械 13 5]
[2] Wan X J 1979 J. Mater. Protect. Z1 11 (in Chinese) [万晓景 1979 材料保护 Z1 11]
[3] Chu W Y 1988 Hydrogen Damage and Delayed Fracture (Beijing: Metallurgical Industry Press) (in Chinese) [褚武扬 1988 氢损伤与滞后断裂 (北京: 冶金工业出版社)]
[4] Martin A S Manchester F D 1990 Bull. Alloy Phase Diagrams 11 173
[5] Lee B J, Jang J W 2007 Acta Mater. 55 6779
[6] Fukai Y 1983 Jpn. J. Appl. Phys. 22 207
[7] Yang Z J 1966 Acta Phys. Sin. 22 294 (in Chinese) [杨正举 1966 22 294]
[8] Paxton A T, Elsässer C 2010 Phys. Rev. B 82 1
[9] Jiang D E, Carter E A 2004 Phys. Rev. B 70 064102
[10] Hayward E, Deo C 2011 J. Phys.: Condens. Matter 23 425402
[11] Simonetti S, Saravia D R, Brizuela G, Juan A 2010 Int. J. Hydrogen Energy 35 5957
[12] Payne M C, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[13] Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895
[14] White J A, Bird D M 1994 Phys. Rev. B 50 4954
[15] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Zhang Y, Yang W 1998 Phys Rev. Lett. 80 890
[17] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[18] Jiang D E, Carter E A 2005 Surf. Sci. 583 60
[19] Seki I, Nagata K 2005 ISIJ Int. 45 1789
[20] Zhang J J, Zhang H 2010 Acta Phys. Sin. 59 4143 (in Chinese) [张建军, 张红 2010 59 4143]
[21] Zhang S, Qin Y, Ma M F, Lu C, Li G Q 2014 Chin. Phys. B 23 013601
[22] Cheng D D, Kuang X Y, Zhao Y R, Shao P, Li Y F 2011 Chin. Phys. B 20 063601
[23] Bozzolo G, Ferrante J 1992 Phys. Rev. B: Condens. Matter 46 8600
[24] Troiano A R 1960 Trans. ASM 52 54
Catalog
Metrics
- Abstract views: 6646
- PDF Downloads: 631
- Cited By: 0