-
应用基于密度泛函理论的赝势平面波第一性原理方法研究了金属元素替代对Li4BN3H10 释氢的影响机理.计算给出了结合能、电子态密度、密集数, 分析了结构的稳定性和原子间的成键情况.结果表明: 晶体的结合能与(LiM)4BN3H10(M=Ni,Ti,Al,Mg)释氢性能没有直接的关联.带隙的宽窄和带隙中是否存在杂质能级是决定(LiM)<
-
关键词:
- LiBNH系储氢材料 /
- 第一性原理 /
- 元素替代 /
- 释氢机理
A first-principles plane-wave pseudopotential method based on the density functional theory is used to investigate the dehydrogenation properties and the influence mechanism of Li4BN3H10 hydrogen storage materials. The binding energy, the density of states and the Mulliken overlap population are calculated. The results show that the binding energy of crystal has no direct correlation with the dehydrogenation ability of (LiM)4BN3H10(M=Ni,Ti,Al,Mg). The width of band gap and the energy level of impurity are key factors to affect the dehydrogenation properties of (LiM)4BN3H10 hydrogen storage materials: the wider the energy gap is, the more strongly the electron is bound to the bond, the more difficultly the bond breaks, and the higher wile the dehydrogenation temperature be. Alloying introduces the impurity energy level in band gap, which leads the Fermi level to enter into the conduction band and the bond to be weakened, thereby resulting in the improvement of the dehydrogenation properties of Li4BN3H10. It is found from the charge population analysis that the bond strengths of N—H and B—H are weakened by alloying, which improves the dehydrogenation properties of Li4BN3H10.-
Keywords:
- hydrogen storage materials /
- first-principles calculation /
- element substitution /
- dehydrogenation
[1] Lei Y Q, Wang Q, Shi Y K 2000 New Energy Materials(Tianjin:Tianjin University Press) (in Chinese)[雷永泉、万 群、石永康 2000 新能源材料(天津:天津大学出版社)]
[2] Hu Z L 2002 Hydrogen Storage Materials (Beijing:Chemical Industry Press) (in Chinese)[胡子龙 2002 储氢材料(北京:化学工业出版社)]
[3] Fang S S, Dong Y D 2001 Natwre 23 259(in Chinese)[方守狮、董远达 2001 自然杂志 23 259]
[4] Pinkerton F E, Meisner G P, Meyer M S, Balogh M P, Kundrat M D 2005 Journal of Physical Chemistry B 109 6
[5] Noritake T, Aoki M, Towata S, Ninomiya A, Nakamori Y, Orimo S 2005 Appl. Phys. A 80 1409
[6] Siegel D J, Wolverton C 2007 Phys. Rev. B 75 014101
[7] Noritake T, Aoki M, Towata S, Ninomiya A, Nakamori Y, Orimo S 2006 Appl. Phys. A 83 277
[8] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, PayneA M C 2002 J. Phys. Condens Matter 14 2717
[9] Vanderbilt D 1990 Phys. Rev. B 41 7892
[10] Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413
[11] Zhang H, Qi K Z, Zhang G Y, Zhu S L 2009 Acta Phys. Sin. 58 8077[张 辉、戚克振、张国英、吴 迪、朱圣龙 2009 58 8077]
[12] Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z, Zhu S L 2009 Chin. Phys. B 18 048601
[13] Van de Wall C G, Hoang K 2009 Phys. Rev. B 80 214109
-
[1] Lei Y Q, Wang Q, Shi Y K 2000 New Energy Materials(Tianjin:Tianjin University Press) (in Chinese)[雷永泉、万 群、石永康 2000 新能源材料(天津:天津大学出版社)]
[2] Hu Z L 2002 Hydrogen Storage Materials (Beijing:Chemical Industry Press) (in Chinese)[胡子龙 2002 储氢材料(北京:化学工业出版社)]
[3] Fang S S, Dong Y D 2001 Natwre 23 259(in Chinese)[方守狮、董远达 2001 自然杂志 23 259]
[4] Pinkerton F E, Meisner G P, Meyer M S, Balogh M P, Kundrat M D 2005 Journal of Physical Chemistry B 109 6
[5] Noritake T, Aoki M, Towata S, Ninomiya A, Nakamori Y, Orimo S 2005 Appl. Phys. A 80 1409
[6] Siegel D J, Wolverton C 2007 Phys. Rev. B 75 014101
[7] Noritake T, Aoki M, Towata S, Ninomiya A, Nakamori Y, Orimo S 2006 Appl. Phys. A 83 277
[8] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, PayneA M C 2002 J. Phys. Condens Matter 14 2717
[9] Vanderbilt D 1990 Phys. Rev. B 41 7892
[10] Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413
[11] Zhang H, Qi K Z, Zhang G Y, Zhu S L 2009 Acta Phys. Sin. 58 8077[张 辉、戚克振、张国英、吴 迪、朱圣龙 2009 58 8077]
[12] Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z, Zhu S L 2009 Chin. Phys. B 18 048601
[13] Van de Wall C G, Hoang K 2009 Phys. Rev. B 80 214109
计量
- 文章访问数: 8428
- PDF下载量: 771
- 被引次数: 0