-
Using X-ray as carrier signal to realize the high rate information transmission in a distant space is attracting the attention of researchers. The development of this technology has a positive significance for broadening the scope of use of the electromagnetic spectrum. In this paper, the novel grid control X-ray source, which consists of a traditional X-ray tube and a signal control grid, is designed to meet the requirements of X-ray communication in the simulation vacuum experimental system by means of three-dimensional electromagnetic simulation software CST particle studio. The tube potential distribution, electron trajectory, actual focal spot and the number of electrons at the anode are simulated by the computer simulation software. It works by changing the grid voltage to control the X-ray pulse emission. The data of the simulation are as follows. The actual focal spot size is 0.4 mm×4 mm, the effective gate-on voltage is 0 V, and the gate-off voltage is-10 V. X-ray tube grid-controlled characteristics are tested in experiment. The test results are well consistent with the simulation results. Finally, the digital signal transmission is successfully implemented in the X-ray vacuum experiment system.
-
Keywords:
- grid control X-ray source /
- focal spot size /
- modulation potential /
- digital signal transmission
[1] Henke B L, Gullikson E M, Davis J C 1993 Atom. Data Nucl. Data 54 181
[2] Zhao B S, Wu C X, Sheng L Z, Liu Y A 2013 Acta Photon. Sin. 42 801 (in Chinese) [赵宝升, 吴川行, 盛立志, 刘永安 2013 光子学报 42 801]
[3] Nikulin V V, Bouzoubaa M, Skormin V A, Busch T E 2001 Opt. Eng. 40 2208
[4] Zhang W, Yu H H, Ye H, Wang T L, Zhao Y B, Lu T S 2013 Chinese Patent 201310105127.5 (in Chinese) [张伟, 俞航华, 叶晖, 王天亮, 赵艳彬, 路同山 2013 中国发明专利 201310105127.5]
[5] Wang K G, Wang L, Niu H B 2009 Chin. Phys. B 18 1807
[6] Fang H, Li Y Z, Huang Y 2005 Vacuum 42 36 (in Chinese) [房鸿, 李耀宗, 黄悦 2005 真空 42 36]
[7] Deng N Q, Zhao B S, Sheng L Z, Yan Q R, Yang H, Liu D 2013 Acta Phys. Sin. 62 060705 (in Chinese) [邓宁勤, 赵宝升, 盛立志, 鄢秋荣, 杨灏, 刘舵 2013 62 060705]
[8] Shi J J, Liu J, Li B Y 2007 Chin. Phys. 16 266
[9] Yang Q 2012 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese) [杨强 2012 博士学位论文 (成都: 成都理工大学)]
[10] Hu H J, Zhao B S, Sheng L Z, Sai X F, Yan Q R, Chen B M, Wang P 2012 Acta Phys. Sin. 61 019701 (in Chinese) [胡慧君, 赵宝升, 盛立志, 赛小峰, 鄢秋荣, 陈宝梅, 王朋 2012 61 019701]
[11] Wang P, Zhao B S, Sheng L Z, Hu H J, Yan Q R 2012 Acta Phys. Sin. 61 209702 (in Chinese) [王朋, 赵宝升, 盛立志, 胡慧君, 鄢秋荣 2012 61 209702]
-
[1] Henke B L, Gullikson E M, Davis J C 1993 Atom. Data Nucl. Data 54 181
[2] Zhao B S, Wu C X, Sheng L Z, Liu Y A 2013 Acta Photon. Sin. 42 801 (in Chinese) [赵宝升, 吴川行, 盛立志, 刘永安 2013 光子学报 42 801]
[3] Nikulin V V, Bouzoubaa M, Skormin V A, Busch T E 2001 Opt. Eng. 40 2208
[4] Zhang W, Yu H H, Ye H, Wang T L, Zhao Y B, Lu T S 2013 Chinese Patent 201310105127.5 (in Chinese) [张伟, 俞航华, 叶晖, 王天亮, 赵艳彬, 路同山 2013 中国发明专利 201310105127.5]
[5] Wang K G, Wang L, Niu H B 2009 Chin. Phys. B 18 1807
[6] Fang H, Li Y Z, Huang Y 2005 Vacuum 42 36 (in Chinese) [房鸿, 李耀宗, 黄悦 2005 真空 42 36]
[7] Deng N Q, Zhao B S, Sheng L Z, Yan Q R, Yang H, Liu D 2013 Acta Phys. Sin. 62 060705 (in Chinese) [邓宁勤, 赵宝升, 盛立志, 鄢秋荣, 杨灏, 刘舵 2013 62 060705]
[8] Shi J J, Liu J, Li B Y 2007 Chin. Phys. 16 266
[9] Yang Q 2012 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese) [杨强 2012 博士学位论文 (成都: 成都理工大学)]
[10] Hu H J, Zhao B S, Sheng L Z, Sai X F, Yan Q R, Chen B M, Wang P 2012 Acta Phys. Sin. 61 019701 (in Chinese) [胡慧君, 赵宝升, 盛立志, 赛小峰, 鄢秋荣, 陈宝梅, 王朋 2012 61 019701]
[11] Wang P, Zhao B S, Sheng L Z, Hu H J, Yan Q R 2012 Acta Phys. Sin. 61 209702 (in Chinese) [王朋, 赵宝升, 盛立志, 胡慧君, 鄢秋荣 2012 61 209702]
Catalog
Metrics
- Abstract views: 6288
- PDF Downloads: 401
- Cited By: 0