-
Regarding the performance degradation caused by the traditional method of covert underwater acoustic communication, in this paper we propose a bionic underwater acoustic communication technology on the basis of differential Pattern time delay shift coding system and dolphin whistles. The signal band of dolphin whistles is narrow and the intervals between information signals are different, and the cross-correlation is very weak. Dolphin whistles are used for synchronization and Patterns, for the time interval between dolphin whistles conveys the information bits. The mimicked version of communication signal is not easy to detect and intercept, and the special encoding method of differential Pattern time delay shift also makes the information not easy to decipher, so this bionic underwater acoustic communication technology has strong covert and confidential nature and it also has an excellent performance in anti inter-symbol interference and anti Doppler effect. A tank experiment is conducted for this system. At SNR 0 dB and relative movement, the user message is recovered at an effective data rate of 67 bit/s with low bit error. It is proved that the system has an effectiveness, robustness and covert nature.
-
Keywords:
- bionic underwater acoustic communication /
- differential Pattern time delay shift coding /
- dolphin whistles /
- covert nature
[1] Meng D, Wang H B, Wu L X, Wang J 2008 Technical Acoustics 27 464 (in Chinese) [孟荻, 王海斌, 吴立新, 汪俊 2008 声学技术 27 464]
[2] Leus G, van Walree P A 2008 IEEE J. Sel. Area Commun. 26 1662
[3] Yang T C, Yang W B 2008 J. Acoust. Soc. Am. 124 3632
[4] Liu S Z, Qiao G, Ismail A 2013 J. Acoust. Soc. Am. 133 EL300
[5] Zhang T W, Yang K D, Ma Y L 2010 Chin. Phys. B 19 124301
[6] Baumgarter M F, Mussoline S E 2011 J. Acoust. Soc. Am. 129 2889
[7] Hawkins E R 2010 J. Acoust. Soc. Am. 128 924
[8] Masahiko F, Tomonari A, Yasushi N 2009 J. Acoust. Soc. Am. 124 3440
[9] Sims P Q, Vaughn R, Hung S K, Wuersig B 2012 J. Acoust. Soc. Am. 131 EL48
[10] Finneran J J 2013 J. Acoust. Soc. Am. 133 1796
[11] Janik V M, Sayigh L S 2013 J. Comp. Physiol. A 199 479
[12] Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 惠娟 2007 56 5915]
[13] Yin J W, Hui J Y, Guo L X 2008 Acta Phys. Sin. 57 1753 (in Chinese) [殷敬伟, 惠俊英, 郭龙祥 2008 57 1753]
[14] Yin J W, Zhang X, Sheng X L, Sun C 2012 J. Commun. 33 112 (in Chinese) [殷敬伟, 张晓, 生雪莉, 孙超 2012 通信学报 33 112]
[15] Yin J W, Hui J Y, Wang Y L, Yao Z X 2006 J. Marine Sci. Appl. 5 51
[16] Guo L X, Mei J D, Zhang L 2011 Technical Acoustics 30 64 (in Chinese) [郭龙祥, 梅继丹, 张亮 2011 声学技术 30 64]
-
[1] Meng D, Wang H B, Wu L X, Wang J 2008 Technical Acoustics 27 464 (in Chinese) [孟荻, 王海斌, 吴立新, 汪俊 2008 声学技术 27 464]
[2] Leus G, van Walree P A 2008 IEEE J. Sel. Area Commun. 26 1662
[3] Yang T C, Yang W B 2008 J. Acoust. Soc. Am. 124 3632
[4] Liu S Z, Qiao G, Ismail A 2013 J. Acoust. Soc. Am. 133 EL300
[5] Zhang T W, Yang K D, Ma Y L 2010 Chin. Phys. B 19 124301
[6] Baumgarter M F, Mussoline S E 2011 J. Acoust. Soc. Am. 129 2889
[7] Hawkins E R 2010 J. Acoust. Soc. Am. 128 924
[8] Masahiko F, Tomonari A, Yasushi N 2009 J. Acoust. Soc. Am. 124 3440
[9] Sims P Q, Vaughn R, Hung S K, Wuersig B 2012 J. Acoust. Soc. Am. 131 EL48
[10] Finneran J J 2013 J. Acoust. Soc. Am. 133 1796
[11] Janik V M, Sayigh L S 2013 J. Comp. Physiol. A 199 479
[12] Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 惠娟 2007 56 5915]
[13] Yin J W, Hui J Y, Guo L X 2008 Acta Phys. Sin. 57 1753 (in Chinese) [殷敬伟, 惠俊英, 郭龙祥 2008 57 1753]
[14] Yin J W, Zhang X, Sheng X L, Sun C 2012 J. Commun. 33 112 (in Chinese) [殷敬伟, 张晓, 生雪莉, 孙超 2012 通信学报 33 112]
[15] Yin J W, Hui J Y, Wang Y L, Yao Z X 2006 J. Marine Sci. Appl. 5 51
[16] Guo L X, Mei J D, Zhang L 2011 Technical Acoustics 30 64 (in Chinese) [郭龙祥, 梅继丹, 张亮 2011 声学技术 30 64]
Catalog
Metrics
- Abstract views: 7745
- PDF Downloads: 1190
- Cited By: 0