搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单矢量差分能量检测器的扩频水声通信

殷敬伟 杜鹏宇 张晓 朱广平

引用本文:
Citation:

基于单矢量差分能量检测器的扩频水声通信

殷敬伟, 杜鹏宇, 张晓, 朱广平

Direct-sequence spread-spectrum underwater acoustic communication based on single vector differential energy detector

Yin Jing-Wei, Du Peng-Yu, Zhang Xiao, Zhu Guang-Ping
PDF
导出引用
  • 通过获得扩频处理增益, 直接序列扩频水声通信系统具有较高的稳定性, 是高质量水声通信及远程水声通信的首选通信方式. 但复杂的海洋环境使得直扩系统在解扩时受到载波相位跳变的影响, 这将导致直扩系统的扩频处理增益下降. 为此, 本文针对直扩系统提出了差分能量检测器算法, 通过比较接收端相关器输出能量完成解码, 并与有源平均声强器算法相结合, 提出单矢量差分能量检测器算法. 该算法具有很好的抗载波相位跳变和多途扩展干扰的能力, 并可对信号方位信息实时跟踪估计, 利用估计方位进行矢量组合可获得矢量处理增益, 从而保证直扩系统可以在低信噪比、时变信道条件下稳定工作. 通过仿真分析和大连海试试验, 验证了本文提出的单矢量差分能量检测器算法的有效性和稳健性.
    By taking advantage of spread processing gain, the direct-sequence spread-spectrum (DSSS) for underwater acoustic (UWA) communication system can be carried out at low signal levels, which is the preferred method for high-quality UWA communication and remote UWA communication. However, phase fluctuation caused by complex marine environment seriously affects the performance of spread spectrum system, leading to the reduction of spread processing gain. Differential energy detector is proposed for DSSS UWA communication system in this paper, which has a good ability of anti-carrier phase fluctuation and multi-path interference by detecting the output energy of two correlators. Differential coding can avoid error propagation when determining the relationship between adjacent symbols. Differential energy detector combined with improved active average sound intensity detector is further proposed in this paper, which can get vector processing gain by updating the estimated azimuth so as to make the system operate stably at a low signal to noise ratio. Improved active average sound intensity detector also has the ability of anti-carrier phase fluctuation, and the feedback code bit information of differential energy detector can ensure that the processing gain of improved active average sound intensity detector is not affected by Doppler's accumulation. Simulation and Dalian sea test have verified the robustness of single vector differential energy detector algorithm. Using the single-vector differential energy detector, good performance is achieved for a signal-to-noise ratio as low as -18 dB based on at-sea data.
      通信作者: 殷敬伟, yinjingwei@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51179034, 61471137, 51509059, 61501061)、中央高校基本科研业务费专项资金(批准号: heucfd1506, heucfx1505)和船舶预研支撑技术基金(批准号: 13J3.1.5) 资助的课题.
      Corresponding author: Yin Jing-Wei, yinjingwei@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51179034, 61471137, 51509059, 61501061), the Fundamental Research Funds for the Central Universities, China (Grant Nos. heucfd1506, heucfx1505), and the Ship Pre-research and Support Technology Foundation, China (Grant No. 13J3.1.5).
    [1]

    Stojanovic M, James P 2009 IEEE Commun. Mag. 47 84

    [2]

    Yang T C 2012 J. Acoust. Soc. Am. 131 129

    [3]

    Yin J W 2011 Principle of Acoustic Communication and Signal Processing (Beijing: National Defense Industry Press) p20 (in Chinese) [殷敬伟 2011 水声通信原理及信号处理技术 (北京: 国防工业出版社) 第20页]

    [4]

    Ye P C, Pan G 2015 Chin. Phys. B 24 066401

    [5]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 58 8379]

    [6]

    Yang T C, Yang W B 2008 J. Acoust. Soc. Am. 124 3632

    [7]

    Yang T C, Yang W B 2008 J. Acoust. Soc. Am. 123 842

    [8]

    Stojanovic M, Freitag L 2000 OCEANS 2000 MTS/IEEE Conference and Exhibition Providence, USA, September 11-14, 2000 p123

    [9]

    Zhou H Y, Li L F, Chen K, Tong F 2012 J. Electron. Inform. Technol. 34 1685 (in Chinese) [周跃海, 李芳兰, 陈楷, 童峰 2012 电子与信息学报 34 1685]

    [10]

    Nehorai A, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [11]

    Song A J, Abdi A, Badiey M, Hursky P 2011 IEEE J. Ocean Eng. 36 454

    [12]

    D'Spain G L, Hodgkiss W S, Edmonds G L 2001 IEEE J. Ocean Eng. 16 195

    [13]

    Hawkes M, Nehorai A 2001 IEEE J. Ocean Eng. 26 337

    [14]

    Yin J W, Yang S, Du P Y, Yu Y, Chen Y 2011 Acta Phys. Sin. 61 064302 (in Chinese) [殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳 2011 61 064302]

    [15]

    Hui J Y, Hui J 2009 Vector Signal Processing (Beijing: National Defense Industry Press) p24 (in Chinese) [惠俊英, 惠娟 2009 矢量声信号处理基础 (北京: 国防工业出版社) 第24页] ewline

  • [1]

    Stojanovic M, James P 2009 IEEE Commun. Mag. 47 84

    [2]

    Yang T C 2012 J. Acoust. Soc. Am. 131 129

    [3]

    Yin J W 2011 Principle of Acoustic Communication and Signal Processing (Beijing: National Defense Industry Press) p20 (in Chinese) [殷敬伟 2011 水声通信原理及信号处理技术 (北京: 国防工业出版社) 第20页]

    [4]

    Ye P C, Pan G 2015 Chin. Phys. B 24 066401

    [5]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 58 8379]

    [6]

    Yang T C, Yang W B 2008 J. Acoust. Soc. Am. 124 3632

    [7]

    Yang T C, Yang W B 2008 J. Acoust. Soc. Am. 123 842

    [8]

    Stojanovic M, Freitag L 2000 OCEANS 2000 MTS/IEEE Conference and Exhibition Providence, USA, September 11-14, 2000 p123

    [9]

    Zhou H Y, Li L F, Chen K, Tong F 2012 J. Electron. Inform. Technol. 34 1685 (in Chinese) [周跃海, 李芳兰, 陈楷, 童峰 2012 电子与信息学报 34 1685]

    [10]

    Nehorai A, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [11]

    Song A J, Abdi A, Badiey M, Hursky P 2011 IEEE J. Ocean Eng. 36 454

    [12]

    D'Spain G L, Hodgkiss W S, Edmonds G L 2001 IEEE J. Ocean Eng. 16 195

    [13]

    Hawkes M, Nehorai A 2001 IEEE J. Ocean Eng. 26 337

    [14]

    Yin J W, Yang S, Du P Y, Yu Y, Chen Y 2011 Acta Phys. Sin. 61 064302 (in Chinese) [殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳 2011 61 064302]

    [15]

    Hui J Y, Hui J 2009 Vector Signal Processing (Beijing: National Defense Industry Press) p24 (in Chinese) [惠俊英, 惠娟 2009 矢量声信号处理基础 (北京: 国防工业出版社) 第24页] ewline

  • [1] 王蕾, 马玺越, 陈克安, 刘韬. 自由场中大尺寸有源微穿孔板吸声器的低频吸声性能.  , 2023, 72(6): 064304. doi: 10.7498/aps.72.20222151
    [2] 杨生辉, 董明义, 渠超越, 田兴成, 董静, 吴冶, 马骁妍, 章红宇, 江晓山, 欧阳群, 李岚坤, 郑国恒. 基于单片有源像素传感器的探测模块测试研究.  , 2021, 70(17): 170702. doi: 10.7498/aps.70.20210464
    [3] 代正亮, 崔维嘉, 王大鸣, 张彦奎. 基于矢量化差分相位的单分布源解耦二维波达方向估计.  , 2018, 67(7): 070702. doi: 10.7498/aps.67.20172154
    [4] 杜鹏宇, 殷敬伟, 周焕玲, 郭龙祥. 基于时反镜能量检测法的循环移位扩频水声通信.  , 2016, 65(1): 014302. doi: 10.7498/aps.65.014302
    [5] 朱良明, 李风华, 孙梅, 陈德胜. 基于频带分解和距离加权的单矢量水听器浅海被动测距方法研究.  , 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [6] 马璐, 刘凇佐, 乔钢. 水声正交频分多址上行通信稀疏信道估计与导频优化.  , 2015, 64(15): 154304. doi: 10.7498/aps.64.154304
    [7] 张歆, 邢晓飞, 张小蓟, 周燕群, 赵顺德, 李俊威. 基于水声信道传播时延排序的分层空时信号检测.  , 2015, 64(16): 164302. doi: 10.7498/aps.64.164302
    [8] 王逸林, 马世龙, 梁国龙, 范展. 基于多径分集的啁啾扩频正交频分复用水声通信系统.  , 2014, 63(4): 044302. doi: 10.7498/aps.63.044302
    [9] 张歆, 张小蓟, 邢晓飞, 姜丽伟. 单载波频域均衡中的水声信道频域响应与噪声估计.  , 2014, 63(19): 194304. doi: 10.7498/aps.63.194304
    [10] 韩笑, 殷敬伟, 郭龙祥, 张晓. 基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究.  , 2013, 62(22): 224301. doi: 10.7498/aps.62.224301
    [11] 刘凇佐, 乔钢, 尹艳玲. 一种利用海豚叫声的仿生水声通信方法.  , 2013, 62(14): 144303. doi: 10.7498/aps.62.144303
    [12] 于洋, 周锋, 乔钢. 正交码元移位键控扩频水声通信.  , 2013, 62(6): 064302. doi: 10.7498/aps.62.064302
    [13] 王巍, 乔钢, 邢思宇. 无边带信息的多输入多输出正交频分复用水声通信图样选择峰均比抑制算法.  , 2013, 62(18): 184301. doi: 10.7498/aps.62.184301
    [14] 何成兵, 黄建国, 孟庆微, 张群飞, 史文涛. 基于扩频码的单载波迭代频域均衡水声通信.  , 2013, 62(23): 234301. doi: 10.7498/aps.62.234301
    [15] 于洋, 周锋, 乔钢. M元码元移位键控扩频水声通信.  , 2012, 61(23): 234301. doi: 10.7498/aps.61.234301
    [16] 殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳. 基于单矢量有源平均声强器的码分多址水声通信.  , 2012, 61(6): 064302. doi: 10.7498/aps.61.064302
    [17] 何成兵, 黄建国, 韩晶, 张群飞. 循环移位扩频水声通信.  , 2009, 58(12): 8379-8385. doi: 10.7498/aps.58.8379
    [18] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究.  , 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [19] 殷敬伟, 惠俊英, 王逸林, 惠 娟. M元混沌扩频多通道Pattern时延差编码水声通信.  , 2007, 56(10): 5915-5921. doi: 10.7498/aps.56.5915
    [20] 李明轩. 声阻法中检测阻抗的测量和提高检测器灵敏度的设计.  , 1974, 23(3): 3-12. doi: 10.7498/aps.23.3-2
计量
  • 文章访问数:  7324
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-09
  • 修回日期:  2015-10-21
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map