Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical absorptions in monolayer and bilayer graphene

Chen Ying-Liang Feng Xiao-Bo Hou De-Dong

Citation:

Optical absorptions in monolayer and bilayer graphene

Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We theoretically simulate one-photon and two-photon absorption spectra for monolayer and bilayer graphene employing the second-order perturbation theory of the electron-photon interaction. The tight-binding model is used to describe the band structure of graphene. The results show that one-photon absorption coefficient of monolayer graphene is a constant about 6.8×107 m-1, demonstrating that the absorptivity of incident light in monolayer graphene approximates to 2.3%. The one-photon absorption coefficient of bilayer graphene changes sectionally with the wavelength and is greater than that of monolayer graphene. The two-photon absorption coefficient of monolayer graphene is proportional to λ4. The two-photon absorption coefficient of bilayer graphene exhibits a giant resonance absorption peak in the infrared (~ 3100 nm) region. Our results will provide theoretical guidance for the application of graphene in the research field of optoelectronic devices.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11064017) and the Applied Basic Research General Programs of Yunnan Province, China (Grant Nos. 2010ZC078, 2010CD047).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [4]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 58 7156]

    [5]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [6]

    Xu X G, Zhang C, Xu G J, Cao J C 2011 Chin. Phys. B 20 027201

    [7]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [8]

    Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平, 徐慧, 魏辰 2008 57 1073]

    [9]

    Toyoda T, Zhang C 2012 Phys. Lett. A 376 616

    [10]

    Min H, Sahu B, Banerjee S K, Mac-Donald A H 2007 Phys. Rev. B 75 155115

    [11]

    Mak K F, Lui C H, Shan J, Heinz T F 2009 Phys. Rev. Lett. 102 256405

    [12]

    Mucha-Kruczyński M, McCann E, Fal’ko V I 2010 Semicond. Sci. Technol. 25 033001

    [13]

    Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A 2009 Angewandte Chemie International Edition 48 7752

    [14]

    Sarma S D, Shaffique A, Hwang E H, Enrico R 2011 Rev. Mod. Phys. 83 407

    [15]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [16]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [17]

    Xing G C, Guo H C, Zhang X H, Sum T C, Alfred Huan C H 2010 Opt. Express 18 4564

    [18]

    Fan Y, Jiang Z G, Yao L F 2012 Chin. Opt. Lett. 10 071901

    [19]

    Hendry E, Hale P J, Moger J, Savchenko A K 2010 Phys. Rev. Lett. 105 097401

    [20]

    Zhang H, Virally S, Bao Q L, Ping L K, Massar S, Godbout N, Kockaert P 2012 Opt. Lett. 37 1856

    [21]

    Guinea F, Castro Neto A H, Peres N M R 2007 Solid State Commun. 143 116

    [22]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2008 Phys. Rev. B 78 045405

    [23]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [24]

    Yang Z, Gao R G, Hu N, Chai J, Cheng Y W, Zhang L Y, Wei H, Kong E S W, Zhang Y F 2012 Nano-Micro Lett. 4 1

    [25]

    Bonaccorso F, Sun Z, Hasan T, Ferrari1 A C 2010 Nature Photon. 4 611

    [26]

    Nathan V, Guenther A H, Mitra S S 1985 J. Opt. Soc. Am. B 2 294

    [27]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [28]

    Koshino M 2013 New J. Phys. 15 015010

    [29]

    McCann E 2006 Phys. Rev. B 74 161403

    [30]

    McCann E, Abergel D S L, Fal’ko V I 2007 Solid State Commun. 143 110

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]

    [4]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 58 7156]

    [5]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [6]

    Xu X G, Zhang C, Xu G J, Cao J C 2011 Chin. Phys. B 20 027201

    [7]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [8]

    Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平, 徐慧, 魏辰 2008 57 1073]

    [9]

    Toyoda T, Zhang C 2012 Phys. Lett. A 376 616

    [10]

    Min H, Sahu B, Banerjee S K, Mac-Donald A H 2007 Phys. Rev. B 75 155115

    [11]

    Mak K F, Lui C H, Shan J, Heinz T F 2009 Phys. Rev. Lett. 102 256405

    [12]

    Mucha-Kruczyński M, McCann E, Fal’ko V I 2010 Semicond. Sci. Technol. 25 033001

    [13]

    Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A 2009 Angewandte Chemie International Edition 48 7752

    [14]

    Sarma S D, Shaffique A, Hwang E H, Enrico R 2011 Rev. Mod. Phys. 83 407

    [15]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [16]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [17]

    Xing G C, Guo H C, Zhang X H, Sum T C, Alfred Huan C H 2010 Opt. Express 18 4564

    [18]

    Fan Y, Jiang Z G, Yao L F 2012 Chin. Opt. Lett. 10 071901

    [19]

    Hendry E, Hale P J, Moger J, Savchenko A K 2010 Phys. Rev. Lett. 105 097401

    [20]

    Zhang H, Virally S, Bao Q L, Ping L K, Massar S, Godbout N, Kockaert P 2012 Opt. Lett. 37 1856

    [21]

    Guinea F, Castro Neto A H, Peres N M R 2007 Solid State Commun. 143 116

    [22]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2008 Phys. Rev. B 78 045405

    [23]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [24]

    Yang Z, Gao R G, Hu N, Chai J, Cheng Y W, Zhang L Y, Wei H, Kong E S W, Zhang Y F 2012 Nano-Micro Lett. 4 1

    [25]

    Bonaccorso F, Sun Z, Hasan T, Ferrari1 A C 2010 Nature Photon. 4 611

    [26]

    Nathan V, Guenther A H, Mitra S S 1985 J. Opt. Soc. Am. B 2 294

    [27]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [28]

    Koshino M 2013 New J. Phys. 15 015010

    [29]

    McCann E 2006 Phys. Rev. B 74 161403

    [30]

    McCann E, Abergel D S L, Fal’ko V I 2007 Solid State Commun. 143 110

  • [1] Zhou Chang, Gong Rui, Feng Xiao-Bo. Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field. Acta Physica Sinica, 2022, 71(5): 054203. doi: 10.7498/aps.71.20211406
    [2] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211406
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [7] Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai. Enhancement of graphene three-channel optical absorption based on metal grating. Acta Physica Sinica, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [8] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [9] Mei Yu-Han, Shao Yue, Hang Zhi-Hong. Microwave experimental platform to demonstrate topology physics based on tight-binding model. Acta Physica Sinica, 2019, 68(22): 227803. doi: 10.7498/aps.68.20191452
    [10] Gao Jian, Sang Tian, Li Jun-Lang, Wang La. Double-channel absorption enhancement of graphene using narrow groove metal grating. Acta Physica Sinica, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [11] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] Yu Zhong, Dang Zhong, Ke Xi-Zheng, Cui Zhen. Optical and electronic properties of N/B doped graphene. Acta Physica Sinica, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [13] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [14] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [15] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of zigzag graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 067301. doi: 10.7498/aps.62.067301
    [17] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [18] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [19] Wang Xue-Mei, Liu Hong. Band structures of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(4): 047102. doi: 10.7498/aps.60.047102
    [20] Hu Hai-Xin, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Tight binding studies on the electronic structure of graphene nanoribbons. Acta Physica Sinica, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
Metrics
  • Abstract views:  12651
  • PDF Downloads:  3899
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2013
  • Accepted Date:  16 June 2013
  • Published Online:  05 September 2013

/

返回文章
返回
Baidu
map