-
石墨烯因其独特的化学成键结构而拥有出色的化学、热学、机械、电学、光学特性.由于石墨烯为零带隙材料,限制了其在纳电子学领域的发展.因此,为了拓宽石墨烯的应用范围,研究打开石墨烯带隙的方法显得尤为重要.本文构建了本征石墨烯、N掺杂石墨烯、B掺杂石墨烯三种模型,研究了本征石墨烯和不同掺杂浓度下的N/B掺杂石墨烯的能带结构、电子态密度及光学与电学性质,包括吸收谱、反射谱、折射率、电导率和介电函数等.研究结果显示:1)本征石墨烯费米能级附近的电子态主要是由C-2p轨道形成,而N/B掺杂石墨烯费米能级附近的电子态主要是由C-2p和N-2p/B-2p轨道杂化形成;2)N/B掺杂可以引起石墨烯费米能级、光学与电学性质的改变,且使狄拉克锥消失,进而打开石墨烯带隙;3)N/B掺杂可以引起石墨烯光学和电学性质的变化,且对吸收谱、反射谱、折射率、介电函数影响较大,而对电导率影响较小.本文的结论可为石墨烯在光电子器件中的应用提供理论依据.Since its discovery in 2004, the graphene has attracted great attention because of its unique chemical bonding structure, which has excellent chemical, thermal, mechanical, electrical and optical properties. Due to the graphene being a zero band gap material, it has a limited development in the field of nano electronics. Therefore, in order to broaden its application scope, it is very important to carry out a study on opening the band gap of graphene. In this paper, we construct three models, i.e., the intrinsic graphene model, the N-doped graphene model, and the B-doped graphene model. We study the energy band structures and the electronic densities of states for the intrinsic graphene and the N/B doped graphenes with different doping concentrations. Furthermore, we study their optical and electronic properties including the absorption spectra, the reflection spectra, the refractive indexes, the conductivities, and the dielectric functions. The results are as follows. 1) The electronic states in the vicinity of the Fermi level for the intrinsic graphene are mainly generated by the C-2p orbits, while the electronic states in the vicinity of the Fermi level for the N/B doped graphenes are mainly generated through the hybridization between C-2p and N-2p/B-2p orbits. N doped graphene is of n-type doping, while B doped graphene is of p-type doping. 2) Compared with that of the intrinsic graphene, the Fermi level of N doped graphene moves up 5 eV. In the meantime, the band gap is opened, and the Dirac cone disappears. On the contrary, the Fermi level of B doped graphene moves down 3 eV compared with that of the intrinsic graphene. However, like the N doping, the band gap is also opened, and the Dirac cone disappears. Furthermore, the N doping is more effective than the B doping in opening the energy gap of the graphene for the same N/B doping concentration. 3) The N/B doping can cause the optical and electronic properties of the graphene to change, and exert great influences on the absorption spectrum, reflection spectrum, the refractive index, and the dielectric function, however it has little influence on the conductivity. When the energy of the incident wave is larger than a certain value, the optical and electrical properties of the intrinsic graphene remain unchanged. Besides, for the above case, the corresponding energies for the N/B doped graphenes are smaller than that for the intrinsic graphene. In addition, the energy for the B doped graphene is smallest. The conclusions of this paper can provide a theoretical basis for the application of graphene in optoelectronic devices.
-
Keywords:
- graphene /
- N/B doped /
- optical and electronic properties
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Andrei K G, Konstantin S N 2007 Nat. Mater. 6 183
[3] Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547
[4] Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)[金芹, 董海明, 韩奎, 王雪峰2015 64 237801]
[5] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749
[6] Dragoman M, Neculoiu D, Dragoman D, Deligeorgis G, Konstantinidis G, Cismaru A, Coccetti F, Plana R 2010 IEEE Microw. Mag. 11 81
[7] Wang X F, Chakraborty T 2007 Phys. Rev. B 75 033408
[8] Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015 64 229501]
[9] Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H 2010 Acs Nano 4 1790
[10] Chang H X, Wu H K 2013 Adv. Funct. Mater. 23 1984
[11] Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254
[12] Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X H, Lu W 2015 Small 11 936
[13] Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L 2011 J. Mater. Chem. 21 5430
[14] Zhou X, Chen J, Gu L, Miao L 2015 Chin. Phys. Lett. 32 026102
[15] Schwierz F 2013 Proc. IEEE 101 1567
[16] Rana F 2008 IEEE Trans. Nanotechnol. 7 91
[17] Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435
[18] Hwang E H, Sarma S D, Otsuji T 2007 Phys. Rev. B 75 205418
[19] Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923
[20] Ristein J 2006 Science 313 1057
[21] Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151
[22] Cordero N A, Alonso J A 2007 Nanotechnology 18 485705
[23] Tsetseris L, Pantelides S T 2012 Phys. Rev. B 85 155446
[24] Oh J S, Kim K N, Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120
[25] Cai P, Wang H P, Yu G 2016 Prog. Phys. 36 121(in Chinese)[蔡乐, 王华平, 于贵2016物理学进展 36 121]
[26] Leenaerts O, Partoens B, Peeters F M 2009 Phys. Rev. B 79 235440
[27] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P B, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652
[28] Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842
[29] Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L J 2009 Small 5 1422
[30] Liu H T, Liu Y Q, Zhu D B 2011 Mater. Chem. 21 3335
[31] Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graph. Model. 62 74
[32] Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196
[33] Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726
[34] Niu L Y, Li Z P, Hong W, Sun J F, Wang Z F, Ma L M, Wang J Q, Yang S R 2013 Electrochim. Acta 108 666
[35] Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 Mater. Chem. 22 390
[36] Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110
[37] Wang X R, Li X, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768
[38] Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys 81 109
[39] Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese)[尹伟红, 韩琴, 杨晓红2012 61 248502]
[40] Mariani E, Glazman L I, Kamenev A, Oppen F 2007 Phys. Rev. B 76 165402
[41] Gmitra M, Konschuh S, Ertler C, Ambrosch D C, Fabian J 2009 Phys. Rev. B 80 235431
[42] Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842
[43] Zhao C J 2011 M. S. Thesis (Xian:Xidian University) (in Chinese)[赵朝军2011硕士学位论文(西安:西安电子科技大学)]
[44] Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752
[45] Du S J 2012 M. S. Thesis (Chongqing:Chongqing University) (in Chinese)[杜声玖2012硕士学位论文(重庆:重庆大学)]
[46] Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 786
[47] Toll J S 1956 Phys. Rev. 104 1760
[48] Fox A M 2001 Optical Properties of Solids 3(Oxford:Oxford University Press) pp9-92
[49] Katsnelson M 2007 Mater. Today 10 20
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Andrei K G, Konstantin S N 2007 Nat. Mater. 6 183
[3] Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547
[4] Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)[金芹, 董海明, 韩奎, 王雪峰2015 64 237801]
[5] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749
[6] Dragoman M, Neculoiu D, Dragoman D, Deligeorgis G, Konstantinidis G, Cismaru A, Coccetti F, Plana R 2010 IEEE Microw. Mag. 11 81
[7] Wang X F, Chakraborty T 2007 Phys. Rev. B 75 033408
[8] Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015 64 229501]
[9] Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H 2010 Acs Nano 4 1790
[10] Chang H X, Wu H K 2013 Adv. Funct. Mater. 23 1984
[11] Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254
[12] Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X H, Lu W 2015 Small 11 936
[13] Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L 2011 J. Mater. Chem. 21 5430
[14] Zhou X, Chen J, Gu L, Miao L 2015 Chin. Phys. Lett. 32 026102
[15] Schwierz F 2013 Proc. IEEE 101 1567
[16] Rana F 2008 IEEE Trans. Nanotechnol. 7 91
[17] Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435
[18] Hwang E H, Sarma S D, Otsuji T 2007 Phys. Rev. B 75 205418
[19] Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923
[20] Ristein J 2006 Science 313 1057
[21] Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151
[22] Cordero N A, Alonso J A 2007 Nanotechnology 18 485705
[23] Tsetseris L, Pantelides S T 2012 Phys. Rev. B 85 155446
[24] Oh J S, Kim K N, Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120
[25] Cai P, Wang H P, Yu G 2016 Prog. Phys. 36 121(in Chinese)[蔡乐, 王华平, 于贵2016物理学进展 36 121]
[26] Leenaerts O, Partoens B, Peeters F M 2009 Phys. Rev. B 79 235440
[27] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P B, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652
[28] Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842
[29] Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L J 2009 Small 5 1422
[30] Liu H T, Liu Y Q, Zhu D B 2011 Mater. Chem. 21 3335
[31] Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graph. Model. 62 74
[32] Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196
[33] Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726
[34] Niu L Y, Li Z P, Hong W, Sun J F, Wang Z F, Ma L M, Wang J Q, Yang S R 2013 Electrochim. Acta 108 666
[35] Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 Mater. Chem. 22 390
[36] Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110
[37] Wang X R, Li X, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768
[38] Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys 81 109
[39] Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese)[尹伟红, 韩琴, 杨晓红2012 61 248502]
[40] Mariani E, Glazman L I, Kamenev A, Oppen F 2007 Phys. Rev. B 76 165402
[41] Gmitra M, Konschuh S, Ertler C, Ambrosch D C, Fabian J 2009 Phys. Rev. B 80 235431
[42] Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842
[43] Zhao C J 2011 M. S. Thesis (Xian:Xidian University) (in Chinese)[赵朝军2011硕士学位论文(西安:西安电子科技大学)]
[44] Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752
[45] Du S J 2012 M. S. Thesis (Chongqing:Chongqing University) (in Chinese)[杜声玖2012硕士学位论文(重庆:重庆大学)]
[46] Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 786
[47] Toll J S 1956 Phys. Rev. 104 1760
[48] Fox A M 2001 Optical Properties of Solids 3(Oxford:Oxford University Press) pp9-92
[49] Katsnelson M 2007 Mater. Today 10 20
计量
- 文章访问数: 9138
- PDF下载量: 645
- 被引次数: 0