搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N/B掺杂石墨烯的光学与电学性质

禹忠 党忠 柯熙政 崔真

引用本文:
Citation:

N/B掺杂石墨烯的光学与电学性质

禹忠, 党忠, 柯熙政, 崔真

Optical and electronic properties of N/B doped graphene

Yu Zhong, Dang Zhong, Ke Xi-Zheng, Cui Zhen
PDF
导出引用
  • 石墨烯因其独特的化学成键结构而拥有出色的化学、热学、机械、电学、光学特性.由于石墨烯为零带隙材料,限制了其在纳电子学领域的发展.因此,为了拓宽石墨烯的应用范围,研究打开石墨烯带隙的方法显得尤为重要.本文构建了本征石墨烯、N掺杂石墨烯、B掺杂石墨烯三种模型,研究了本征石墨烯和不同掺杂浓度下的N/B掺杂石墨烯的能带结构、电子态密度及光学与电学性质,包括吸收谱、反射谱、折射率、电导率和介电函数等.研究结果显示:1)本征石墨烯费米能级附近的电子态主要是由C-2p轨道形成,而N/B掺杂石墨烯费米能级附近的电子态主要是由C-2p和N-2p/B-2p轨道杂化形成;2)N/B掺杂可以引起石墨烯费米能级、光学与电学性质的改变,且使狄拉克锥消失,进而打开石墨烯带隙;3)N/B掺杂可以引起石墨烯光学和电学性质的变化,且对吸收谱、反射谱、折射率、介电函数影响较大,而对电导率影响较小.本文的结论可为石墨烯在光电子器件中的应用提供理论依据.
    Since its discovery in 2004, the graphene has attracted great attention because of its unique chemical bonding structure, which has excellent chemical, thermal, mechanical, electrical and optical properties. Due to the graphene being a zero band gap material, it has a limited development in the field of nano electronics. Therefore, in order to broaden its application scope, it is very important to carry out a study on opening the band gap of graphene. In this paper, we construct three models, i.e., the intrinsic graphene model, the N-doped graphene model, and the B-doped graphene model. We study the energy band structures and the electronic densities of states for the intrinsic graphene and the N/B doped graphenes with different doping concentrations. Furthermore, we study their optical and electronic properties including the absorption spectra, the reflection spectra, the refractive indexes, the conductivities, and the dielectric functions. The results are as follows. 1) The electronic states in the vicinity of the Fermi level for the intrinsic graphene are mainly generated by the C-2p orbits, while the electronic states in the vicinity of the Fermi level for the N/B doped graphenes are mainly generated through the hybridization between C-2p and N-2p/B-2p orbits. N doped graphene is of n-type doping, while B doped graphene is of p-type doping. 2) Compared with that of the intrinsic graphene, the Fermi level of N doped graphene moves up 5 eV. In the meantime, the band gap is opened, and the Dirac cone disappears. On the contrary, the Fermi level of B doped graphene moves down 3 eV compared with that of the intrinsic graphene. However, like the N doping, the band gap is also opened, and the Dirac cone disappears. Furthermore, the N doping is more effective than the B doping in opening the energy gap of the graphene for the same N/B doping concentration. 3) The N/B doping can cause the optical and electronic properties of the graphene to change, and exert great influences on the absorption spectrum, reflection spectrum, the refractive index, and the dielectric function, however it has little influence on the conductivity. When the energy of the incident wave is larger than a certain value, the optical and electrical properties of the intrinsic graphene remain unchanged. Besides, for the above case, the corresponding energies for the N/B doped graphenes are smaller than that for the intrinsic graphene. In addition, the energy for the B doped graphene is smallest. The conclusions of this paper can provide a theoretical basis for the application of graphene in optoelectronic devices.
      通信作者: 党忠, dangzhongyue@163.com
    • 基金项目: 国家自然科学基金(批准号:61377080,60977054)资助的课题.
      Corresponding author: Dang Zhong, dangzhongyue@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377080, 60977054).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Andrei K G, Konstantin S N 2007 Nat. Mater. 6 183

    [3]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [4]

    Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)[金芹, 董海明, 韩奎, 王雪峰2015 64 237801]

    [5]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [6]

    Dragoman M, Neculoiu D, Dragoman D, Deligeorgis G, Konstantinidis G, Cismaru A, Coccetti F, Plana R 2010 IEEE Microw. Mag. 11 81

    [7]

    Wang X F, Chakraborty T 2007 Phys. Rev. B 75 033408

    [8]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015 64 229501]

    [9]

    Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H 2010 Acs Nano 4 1790

    [10]

    Chang H X, Wu H K 2013 Adv. Funct. Mater. 23 1984

    [11]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [12]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X H, Lu W 2015 Small 11 936

    [13]

    Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L 2011 J. Mater. Chem. 21 5430

    [14]

    Zhou X, Chen J, Gu L, Miao L 2015 Chin. Phys. Lett. 32 026102

    [15]

    Schwierz F 2013 Proc. IEEE 101 1567

    [16]

    Rana F 2008 IEEE Trans. Nanotechnol. 7 91

    [17]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [18]

    Hwang E H, Sarma S D, Otsuji T 2007 Phys. Rev. B 75 205418

    [19]

    Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923

    [20]

    Ristein J 2006 Science 313 1057

    [21]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [22]

    Cordero N A, Alonso J A 2007 Nanotechnology 18 485705

    [23]

    Tsetseris L, Pantelides S T 2012 Phys. Rev. B 85 155446

    [24]

    Oh J S, Kim K N, Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120

    [25]

    Cai P, Wang H P, Yu G 2016 Prog. Phys. 36 121(in Chinese)[蔡乐, 王华平, 于贵2016物理学进展 36 121]

    [26]

    Leenaerts O, Partoens B, Peeters F M 2009 Phys. Rev. B 79 235440

    [27]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P B, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [28]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [29]

    Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L J 2009 Small 5 1422

    [30]

    Liu H T, Liu Y Q, Zhu D B 2011 Mater. Chem. 21 3335

    [31]

    Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graph. Model. 62 74

    [32]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196

    [33]

    Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726

    [34]

    Niu L Y, Li Z P, Hong W, Sun J F, Wang Z F, Ma L M, Wang J Q, Yang S R 2013 Electrochim. Acta 108 666

    [35]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 Mater. Chem. 22 390

    [36]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110

    [37]

    Wang X R, Li X, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [38]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys 81 109

    [39]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese)[尹伟红, 韩琴, 杨晓红2012 61 248502]

    [40]

    Mariani E, Glazman L I, Kamenev A, Oppen F 2007 Phys. Rev. B 76 165402

    [41]

    Gmitra M, Konschuh S, Ertler C, Ambrosch D C, Fabian J 2009 Phys. Rev. B 80 235431

    [42]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [43]

    Zhao C J 2011 M. S. Thesis (Xian:Xidian University) (in Chinese)[赵朝军2011硕士学位论文(西安:西安电子科技大学)]

    [44]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [45]

    Du S J 2012 M. S. Thesis (Chongqing:Chongqing University) (in Chinese)[杜声玖2012硕士学位论文(重庆:重庆大学)]

    [46]

    Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 786

    [47]

    Toll J S 1956 Phys. Rev. 104 1760

    [48]

    Fox A M 2001 Optical Properties of Solids 3(Oxford:Oxford University Press) pp9-92

    [49]

    Katsnelson M 2007 Mater. Today 10 20

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Andrei K G, Konstantin S N 2007 Nat. Mater. 6 183

    [3]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [4]

    Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)[金芹, 董海明, 韩奎, 王雪峰2015 64 237801]

    [5]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [6]

    Dragoman M, Neculoiu D, Dragoman D, Deligeorgis G, Konstantinidis G, Cismaru A, Coccetti F, Plana R 2010 IEEE Microw. Mag. 11 81

    [7]

    Wang X F, Chakraborty T 2007 Phys. Rev. B 75 033408

    [8]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015 64 229501]

    [9]

    Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H 2010 Acs Nano 4 1790

    [10]

    Chang H X, Wu H K 2013 Adv. Funct. Mater. 23 1984

    [11]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [12]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X H, Lu W 2015 Small 11 936

    [13]

    Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L 2011 J. Mater. Chem. 21 5430

    [14]

    Zhou X, Chen J, Gu L, Miao L 2015 Chin. Phys. Lett. 32 026102

    [15]

    Schwierz F 2013 Proc. IEEE 101 1567

    [16]

    Rana F 2008 IEEE Trans. Nanotechnol. 7 91

    [17]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [18]

    Hwang E H, Sarma S D, Otsuji T 2007 Phys. Rev. B 75 205418

    [19]

    Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923

    [20]

    Ristein J 2006 Science 313 1057

    [21]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [22]

    Cordero N A, Alonso J A 2007 Nanotechnology 18 485705

    [23]

    Tsetseris L, Pantelides S T 2012 Phys. Rev. B 85 155446

    [24]

    Oh J S, Kim K N, Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120

    [25]

    Cai P, Wang H P, Yu G 2016 Prog. Phys. 36 121(in Chinese)[蔡乐, 王华平, 于贵2016物理学进展 36 121]

    [26]

    Leenaerts O, Partoens B, Peeters F M 2009 Phys. Rev. B 79 235440

    [27]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P B, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [28]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [29]

    Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L J 2009 Small 5 1422

    [30]

    Liu H T, Liu Y Q, Zhu D B 2011 Mater. Chem. 21 3335

    [31]

    Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graph. Model. 62 74

    [32]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196

    [33]

    Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726

    [34]

    Niu L Y, Li Z P, Hong W, Sun J F, Wang Z F, Ma L M, Wang J Q, Yang S R 2013 Electrochim. Acta 108 666

    [35]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 Mater. Chem. 22 390

    [36]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110

    [37]

    Wang X R, Li X, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [38]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys 81 109

    [39]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese)[尹伟红, 韩琴, 杨晓红2012 61 248502]

    [40]

    Mariani E, Glazman L I, Kamenev A, Oppen F 2007 Phys. Rev. B 76 165402

    [41]

    Gmitra M, Konschuh S, Ertler C, Ambrosch D C, Fabian J 2009 Phys. Rev. B 80 235431

    [42]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [43]

    Zhao C J 2011 M. S. Thesis (Xian:Xidian University) (in Chinese)[赵朝军2011硕士学位论文(西安:西安电子科技大学)]

    [44]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [45]

    Du S J 2012 M. S. Thesis (Chongqing:Chongqing University) (in Chinese)[杜声玖2012硕士学位论文(重庆:重庆大学)]

    [46]

    Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 786

    [47]

    Toll J S 1956 Phys. Rev. 104 1760

    [48]

    Fox A M 2001 Optical Properties of Solids 3(Oxford:Oxford University Press) pp9-92

    [49]

    Katsnelson M 2007 Mater. Today 10 20

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算.  , 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响.  , 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [3] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应.  , 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [4] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [5] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响.  , 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响.  , 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [7] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究.  , 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [8] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展.  , 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [9] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用.  , 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [10] 林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟. 扭转双层石墨烯物理性质、制备方法及其应用的研究进展.  , 2018, 67(24): 246802. doi: 10.7498/aps.67.20181432
    [11] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算.  , 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [12] 张婷婷, 成蒙, 杨蓉, 张广宇. 锯齿形石墨烯反点网络加工与输运性质研究.  , 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [13] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控.  , 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [14] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响.  , 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [15] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究.  , 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [16] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质.  , 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [17] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究.  , 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [18] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究.  , 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [19] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [20] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究.  , 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
计量
  • 文章访问数:  9138
  • PDF下载量:  645
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-12
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map