-
In this paper, compression test is carried on electrodeposited nano-crystalline (NC) Ni at 77 K. The results show that the NC Ni has extremely high compressive strengths: around 2.5 GPa at room temperature (RT), 3.5 GPa at 77 K, and moderate plasticity with 0.1 fracture strain at RT, 0.05 at 77 K. The strain rate sensitivity m and activation volume v are calculated, and scanning election microscope and high-resolution transmission election microscope are used to verify the deformation mechanism. Analysis indicates that the dislocation interaction with grain boundary (GB) dominates the deformation of NC Ni both at 77 K and RT. Based on the calculated values of m and v, the deformation process is described by considering the intrinsic dislocation of GB bowing out and expanding towards opposite GB in the inner grain dislocation-free zone. And the mechanism is studied in the residual dislocation parts affecting the increase of strain compatibility and the decrease of stress concentration. It is indicated that the difference in compression property between at RT and 77 K is relatated to grain boundary-dislocation coordination mechanism and relation between residual dislocation motion and temperature.
-
Keywords:
- plastic deform /
- strength /
- dislocation
[1] Gleiter H 1989 Prog. Mater. Sci. 33 223
[2] Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 62 036801]
[3] Gleiter H 2000 Acta Mater. 48 1
[4] Tschopp M A, McDowell D L 2008 Scripta Mater. 58 299
[5] Zhu Y T, Wu X L, Liao X Z, Narayan J, Mathaudhu S N, Kecskes L J 2009 Appl. Phys. Lett. 95 031909
[6] Ball A, Hutchinson M M 1969 J. Mater. Sci. 3 1
[7] Li J C M 1963 Trans. Met. Soc. 227 239.
[8] Ma E 2003 Scripta Mater. 49 663
[9] van Swygenhoven H, Caro A 1997 Appl. Phys. Lett. 71 1652
[10] Chokshi A H, Rosen A, Karch J, Gleiter H 1989 Scripta Mater. 23 1679
[11] Wang Y M, Hamza A V, Ma E 2006 Acta Mater. 54 2715
[12] Wu X, Zhu Y T, Chen M W, Ma E 2006 Scripta Mater. 54 1685
[13] Li H, Liaw P K, Choo H, Tabachnikova E D, Podolskiy A V, Smirnov S N, Bengus V Z 2008 Mat. Sci. Eng. A 493 93
[14] Wang Y, Chen M, Zhou F, Ma E 2002 Nature 419 912
[15] Liao X Z, Srinivasan S G, Zhao Y H, Baskes M I, Zhu Y T, Zhou F, Lavernia E J, Xu H 2004 Appl. Phys. Lett. 84 3564
[16] Asaro R J, Krysl P, Kad B 2003 Philos. Mag. 83 733
[17] Nieh T G, Wadsworth J 1991 Scripta Metall. Mater. 25 955
[18] Meyers M A, Vöhringer O, Lubarda V A 2001 Acta Mater. 49 4025
[19] Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 426
-
[1] Gleiter H 1989 Prog. Mater. Sci. 33 223
[2] Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 62 036801]
[3] Gleiter H 2000 Acta Mater. 48 1
[4] Tschopp M A, McDowell D L 2008 Scripta Mater. 58 299
[5] Zhu Y T, Wu X L, Liao X Z, Narayan J, Mathaudhu S N, Kecskes L J 2009 Appl. Phys. Lett. 95 031909
[6] Ball A, Hutchinson M M 1969 J. Mater. Sci. 3 1
[7] Li J C M 1963 Trans. Met. Soc. 227 239.
[8] Ma E 2003 Scripta Mater. 49 663
[9] van Swygenhoven H, Caro A 1997 Appl. Phys. Lett. 71 1652
[10] Chokshi A H, Rosen A, Karch J, Gleiter H 1989 Scripta Mater. 23 1679
[11] Wang Y M, Hamza A V, Ma E 2006 Acta Mater. 54 2715
[12] Wu X, Zhu Y T, Chen M W, Ma E 2006 Scripta Mater. 54 1685
[13] Li H, Liaw P K, Choo H, Tabachnikova E D, Podolskiy A V, Smirnov S N, Bengus V Z 2008 Mat. Sci. Eng. A 493 93
[14] Wang Y, Chen M, Zhou F, Ma E 2002 Nature 419 912
[15] Liao X Z, Srinivasan S G, Zhao Y H, Baskes M I, Zhu Y T, Zhou F, Lavernia E J, Xu H 2004 Appl. Phys. Lett. 84 3564
[16] Asaro R J, Krysl P, Kad B 2003 Philos. Mag. 83 733
[17] Nieh T G, Wadsworth J 1991 Scripta Metall. Mater. 25 955
[18] Meyers M A, Vöhringer O, Lubarda V A 2001 Acta Mater. 49 4025
[19] Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 426
Catalog
Metrics
- Abstract views: 5817
- PDF Downloads: 503
- Cited By: 0