搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效弹性模量的微裂纹-超声波非线性作用多阶段模型

杨斌 魏烁 史开元

引用本文:
Citation:

基于等效弹性模量的微裂纹-超声波非线性作用多阶段模型

杨斌, 魏烁, 史开元

Modelling of multi-stage nonlinear interaction of micro-crack and ultrasonic based on equivalent elastic modulus

Yang Bin, Wei Shuo, Shi Kai-Yuan
PDF
导出引用
  • 提出了一种基于等效弹性模量的微裂纹-超声波非线性作用多阶段模型.该模型将微裂纹微观层面的界面几何特征和宏观层面的界面相对运动统一为介观单元弹性模量的变化,利用等效弹性模量表征损伤区域的应力-应变,然后利用分段函数来描述微裂纹-超声波非线性相互作用,最后通过有限元仿真对波动方程进行求解,验证了模型的有效性,获得了超声波在经过微裂纹后传播的非线性波动规律.仿真结果表明本文提出的模型相比于双线性刚度模型、接触面模型,能更好地体现一个谐波周期内超声波经过微裂纹损伤区域时波形会发生畸变.同时,仿真实验还分析了裂纹倾角、裂纹长度和超声波激励幅值对超声波经过微裂纹后产生的二次和三次谐波的幅值的影响.最后,对比分析了该模型的仿真计算结果与实验测试结果,表明本文提出的多阶段模型与实验测试均能较好地体现微裂纹-超声波非线性作用产生的二次谐波信号,且结果基本一致,验证了模型的有效性.该模型为开展超声波非线性效应定量检测微裂纹提供了一种新的仿真手段.
    A multi-stage model of nonlinear interaction between micro-crack and ultrasound based on equivalent elastic modulus is presented in this paper. In this model, the interface characteristics of micro-cracks at a micro-level and the relative motion at a macro-level are unified into an elastic modulus of the mesoscopic element. The equivalent elastic modulus is used to characterize the stress-strain of the damage region. Then piecewise function is used to describe the nonlinear interaction between ultrasound and micro-crack. Finally, the wave equation is solved by the finite element simulation. In this manner, the nonlinear interaction law between ultrasound and micro-crack is obtained, and the validity of the model is verified. The simulation results also show that compared with bilinear stiffness model and contact surface model, the multi-stage model can well reflect the distortion of the waveform in one period of ultrasonic wave passing through the micro-crack. In addition, the influences of the crack angle, the crack length and the input amplitude on the second harmonics generation and the third harmonics generation are analyzed. In the end, the comparison and analysis of the experimental test and simulation calculations based on the proposed multi-stage model show that the proposed multi-stage model and the experimental test can well reflect the second harmonic signal produced by the nonlinear interaction of micro-crack and ultrasound, and the second harmonic amplitudes of the experimental test are basically the same as the simulation calculations based on the proposed multi-stage model. Thus, the effectiveness of the proposed multi-stage model is verified. The model provides a new simulation method to quantitatively detect the micro-crack by ultrasonic nonlinear effect.
      通信作者: 杨斌, binyang@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51575038,51471022)和中央高校基本科研业务费(批准号:TW201710,FRF-BD-16-004A)资助的课题.
      Corresponding author: Yang Bin, binyang@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.51575038,51471022) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos.TW201710,FRF-BD-16-004A).
    [1]

    Jhang K Y 2009 Int. J. Precis Eng. Man. 10 123

    [2]

    Chen Z J, Zhang S Y, Zheng K 2010 Acta Phys. Sin. 59 4071 (in Chinese)[陈赵江, 张淑仪, 郑凯 2010 59 4071]

    [3]

    Wu M, Guo F, Li M, Han Y 2016 Mater. Sci. Forum. 849 603

    [4]

    Broda D, Staszewski W J, Martowicz A, Uhl T, Silberschmidt V V 2014 J. Sound.Vib. 333 1097

    [5]

    Lim H J, Song B, Park B, Sohn H 2015 NDT E Int. 73 8

    [6]

    Matlack K H, Kim J Y, Jacobs L J, Qu J 2015 J. Nondestruct Eval. 34 273

    [7]

    Friswell M I, Penny J E T 2002 Struct Health Monit. 1 139

    [8]

    Solodov I Y, Krohn N, Busse G 2002 Ultrasonics 40 621

    [9]

    Williamson J B P, Greenwood J A 1966 Proc. R. Soc. London A 19 295

    [10]

    Baltazar A, Rokhlin S I, Pecorari C 2002 J. Mech. Phys. Solids. 50 1397

    [11]

    Nazarov V E, Sutin A M 1998 J. Acoust. Soc. Am. 102 3349

    [12]

    Xiao Q, Wang J, Guo X S, Zhang D 2013 Acta Phys. Sin. 62 275 (in Chinese)[肖齐, 王珺, 郭霞生, 章东 2013 62 275]

    [13]

    Brown S R, Scholz C H 1985 J. Geophys. Res. 90 5531

    [14]

    Cai M, Horii H 1992 Mech. Mater. 13 217

  • [1]

    Jhang K Y 2009 Int. J. Precis Eng. Man. 10 123

    [2]

    Chen Z J, Zhang S Y, Zheng K 2010 Acta Phys. Sin. 59 4071 (in Chinese)[陈赵江, 张淑仪, 郑凯 2010 59 4071]

    [3]

    Wu M, Guo F, Li M, Han Y 2016 Mater. Sci. Forum. 849 603

    [4]

    Broda D, Staszewski W J, Martowicz A, Uhl T, Silberschmidt V V 2014 J. Sound.Vib. 333 1097

    [5]

    Lim H J, Song B, Park B, Sohn H 2015 NDT E Int. 73 8

    [6]

    Matlack K H, Kim J Y, Jacobs L J, Qu J 2015 J. Nondestruct Eval. 34 273

    [7]

    Friswell M I, Penny J E T 2002 Struct Health Monit. 1 139

    [8]

    Solodov I Y, Krohn N, Busse G 2002 Ultrasonics 40 621

    [9]

    Williamson J B P, Greenwood J A 1966 Proc. R. Soc. London A 19 295

    [10]

    Baltazar A, Rokhlin S I, Pecorari C 2002 J. Mech. Phys. Solids. 50 1397

    [11]

    Nazarov V E, Sutin A M 1998 J. Acoust. Soc. Am. 102 3349

    [12]

    Xiao Q, Wang J, Guo X S, Zhang D 2013 Acta Phys. Sin. 62 275 (in Chinese)[肖齐, 王珺, 郭霞生, 章东 2013 62 275]

    [13]

    Brown S R, Scholz C H 1985 J. Geophys. Res. 90 5531

    [14]

    Cai M, Horii H 1992 Mech. Mater. 13 217

  • [1] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究.  , 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [2] 于博, 张岩, 贺伟国, 杭观荣, 康小录, 赵青. 超声波电喷推力器羽流中和特性研究.  , 2018, 67(4): 040201. doi: 10.7498/aps.67.20171972
    [3] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应.  , 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [4] 张正罡, 他得安. 基于弹性模量检测骨疲劳的超声导波方法研究.  , 2012, 61(13): 134304. doi: 10.7498/aps.61.134304
    [5] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量.  , 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [6] 沈壮志, 吴胜举. 声场中气泡群的动力学特性.  , 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [7] 李士军, 任玉, 卢俊, 蔡红星. 声光可调滤波器的超声波频率协调关系的研究.  , 2011, 60(5): 054216. doi: 10.7498/aps.60.054216
    [8] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法.  , 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [9] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性.  , 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [10] 丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁. 一种基于开口空心球的声学超材料.  , 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [11] 丁昌林, 赵晓鹏. 可听声频段的声学超材料.  , 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [12] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应.  , 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [13] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析.  , 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [14] 陈 谦, 邹欣晔, 程建春. 超声波声孔效应中气泡动力学的研究.  , 2006, 55(12): 6476-6481. doi: 10.7498/aps.55.6476
    [15] 常 明, 杨保和, 常 皓. 纳米晶体微观畸变与弹性模量的模拟研究.  , 1999, 48(7): 1215-1222. doi: 10.7498/aps.48.1215
    [16] 都有为, 童兴武, 钟伟, 王挺祥, 干昌明, 章肖融. 超声波在磁性液体中的传播特性.  , 1992, 41(1): 144-148. doi: 10.7498/aps.41.144
    [17] 张统一, 蒋方忻, 褚武扬, 肖纪美. 氢对纯镍弹性模量的影响.  , 1986, 35(9): 1172-1181. doi: 10.7498/aps.35.1172
    [18] 王积方, 李华丽, 唐汝明, 查济璇, 何寿安. 熔石英的弹性模量和超声状态方程.  , 1982, 31(10): 1423-1430. doi: 10.7498/aps.31.1423
    [19] 魏荣爵, 张淑仪. 超声波在悬浮液(水)中的吸收.  , 1965, 21(5): 1061-1074. doi: 10.7498/aps.21.1061
    [20] 魏荣爵, 张淑仪. 超声波在乙酸乙酯和乙酸甲酯中的弛豫吸收.  , 1962, 18(6): 298-304. doi: 10.7498/aps.18.298
计量
  • 文章访问数:  5929
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 修回日期:  2017-05-05
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map