-
The DC conductivity of the CaCu3Ti4O12 ceramic is considerable at low frequency. The dielectric properties of the CaCu3Ti4O12 ceramics are analyzed by dielectric spectrum, and the two relaxation processes are characterized by the dielectric modulus. The two relaxation processes are considered which are dominated by the electronic relaxation of deep bulk traps at the depletion layer edge. The low-frequency and high-frequency relaxation processes are attributed to oxygen-vacancy-related defect and native defect, respectively. It is proved that the modulus response of the CaCu3Ti4O12 ceramic is equivalent to conductivity response at high temperature (low frequency), and the peak value of the M" is inversely proportional to capacitance. The activation energies calculated by conductivity and modulus are equivalent to each other. The modulus spectrum is more effective to the material which has high DC conductivity at low frequency such as CCTO ceramic.
-
Keywords:
- CaCu3Ti4O12 ceramics /
- dielectric modulus /
- relaxation polarization /
- conductivity
[1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 Solid State Chem. 151 323
[2] Ramirez A, Subramanian M, Gardel M, Blumberg G, Li D, Vogt D, Shapiro S M 2000 Solid State Comuun. 115 217
[3] Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673
[4] Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124
[5] Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912
[6] Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903
[7] Cheng P F, Li S T, Zhang L, Li J Y 2008 Appl. Phys. Lett. 93 012902
[8] Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201
[9] Li J, Li B, Zhai D, Li S T, Alim M A 2006 J. Phys. D:Appl. Phys. 39 4969
[10] Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302 (in Chinese) [成鹏飞, 李盛涛, 李建英 2012 61 187302]
[11] Cowley A M 1966 J. Appl. Phys. 37 3024
[12] Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2003 Phys. Rev. B 70 144106
[13] Zhang L, Tang Z J 2003 Phys. Rev. B 70 174306
[14] Jia R, Gu F, Wu Z H, Zhao X T, Li J Y 2012 Acta Phys. Sin. 61 207701 (in Chinese) [贾然, 顾访, 吴珍华, 赵学童, 李建英 2012 61 207701]
[15] Yang Y 2009 Ph.D. Dissertation (Xi'an:Xi'an Jiaotong University) (in Chinese) [杨雁 2009 博士学位论文(西安:西安交通大学)]
[16] Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D:Appl. Phys. 38 1824
[17] Yu A Y C, Snow E H 1968 J. Appl. Phys. 39 3008
-
[1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 Solid State Chem. 151 323
[2] Ramirez A, Subramanian M, Gardel M, Blumberg G, Li D, Vogt D, Shapiro S M 2000 Solid State Comuun. 115 217
[3] Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673
[4] Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124
[5] Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912
[6] Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903
[7] Cheng P F, Li S T, Zhang L, Li J Y 2008 Appl. Phys. Lett. 93 012902
[8] Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201
[9] Li J, Li B, Zhai D, Li S T, Alim M A 2006 J. Phys. D:Appl. Phys. 39 4969
[10] Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302 (in Chinese) [成鹏飞, 李盛涛, 李建英 2012 61 187302]
[11] Cowley A M 1966 J. Appl. Phys. 37 3024
[12] Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2003 Phys. Rev. B 70 144106
[13] Zhang L, Tang Z J 2003 Phys. Rev. B 70 174306
[14] Jia R, Gu F, Wu Z H, Zhao X T, Li J Y 2012 Acta Phys. Sin. 61 207701 (in Chinese) [贾然, 顾访, 吴珍华, 赵学童, 李建英 2012 61 207701]
[15] Yang Y 2009 Ph.D. Dissertation (Xi'an:Xi'an Jiaotong University) (in Chinese) [杨雁 2009 博士学位论文(西安:西安交通大学)]
[16] Zang G Z, Zhang J L, Zheng P, Wang J F, Wang C L 2005 J. Phys. D:Appl. Phys. 38 1824
[17] Yu A Y C, Snow E H 1968 J. Appl. Phys. 39 3008
Catalog
Metrics
- Abstract views: 7807
- PDF Downloads: 1260
- Cited By: 0