-
In order to repeat the propagation and its distribution characteristics, the lightning electromagnetic field (LEMP) in the entire space is calculated by a modified finite difference time-domain (FDTD) approach in this paper. Different from issued results, in which the electromagnetic field operates only at some discrete points near the ground, the LEMP and its time derivatives, power density and energy density at each unit in the whole space under the ground are calculated and expressed as groups of pictures. We find LEMPs attenuate exponentially in the horizontal and vertical direction, in the area near the ground and far from the discharge channel. The peak values of horizontal electric field and azimuthal magnetic field each have an unaltered polarity and their contours are similar to double exponential functions in the entire space under the ground. However the peak values of vertical electric field can be divided into two opposite-polarity parts in the whole area under the ground, and the contours in the area near the strike channel are spherical in shape. The other components have similar features. We also calculate the LEMPs with different values of ground conductivity, ground permittivity, return model and base current, and the characteristics of distribution are not changed, although the values are enhanced integrally in some cases. And in the layered earth, the LEMP has similar contours inside the layers. Even in the case of striking to the lightning rod, the characteristics of distribution are not changed. These patterns and distribution characteristics of LEMP can provide support and reference in shielding design and route planning under the ground.
-
Keywords:
- lightning /
- electromagnetic field /
- distribution characteristics
[1] Rachidi F 2011 11th International Symposium on Lightning Protection, Fortaleza, Brazil, October 3-7, 2011 p304
[2] Rakov V A, Rachidi F 2009 IEEE Trans. Electromagn. Compat. 51 428
[3] Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 61 039203]
[4] Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201 (in Chinese) [蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘 2011 60 079201]
[5] Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方 2009 58 6616]
[6] Cooray V 2010 IEEE Trans. Electromagn. Compat. 52 936
[7] Delfino F, Procopio R, Rossi M, Rachidi F, Nucci C A 2007 IEEE Trans. Electromagn. Compat. 49 401
[8] Yang C, Zhou B 2004 IEEE Trans. Electromagn. Compat. 46 133
[9] Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨静, 郄秀书, 王建国, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 57 1968]
[10] Yang B, Zhou B H, Gao C, Shi L H, Chen B, Chen H L 2011 IEEE Trans. Electromagn. Compat. 53 256
[11] Kirawanich P, Kranthi N, Gunda R, Stillwell A R, Islam N E 2004 J. Appl. Phys. 96 5892
[12] Delfino F, Procopio R, Rossi M, Rachidi F 2009 J. Geophys. Res. 114
[13] Zhang Q L, Yang J, Jing X Q, Li D S, Wang Z H 2012 Atmos. Res. 104 202
[14] Cooray V, Rakov V A 2011 IEEE Trans. Electromagn. Compat. 53 773
[15] Novak T, Fisher T J 2001 IEEE Trans. Ind. Appl. 37 1555
[16] Petrache E, Rachidi F, Paolone M, Nucci C A, Rakov V A, Uman M A 2005 IEEE Trans. Electromagn. Compat. 47 498
[17] Cooray V 2001 IEEE Trans. Electromagn. Compat. 43 75
[18] Paolone M, Petrache E, Rachidi F, Nucci C A, Rakov V A, Uman M A, Jordan D, Rambo K, Jerauld J, Nyffeler M, Schoene J 2005 IEEE Trans. Electromagn. Compat. 47 509
[19] Yang B, Zhou B H, Chen B, Wang J B, Meng X 2012 IEEE Trans. Electromagn. Compat. 54 323
[20] Yang B, Zhou B H, Meng X 2010 Acta Phys. Sin. 59 8978 (in Chinese) [杨波, 周璧华, 孟鑫 2010 59 8978]
[21] Barbosa C F, Paulino J O S 2010 IEEE Trans. Electromagn. Compat. 52 640
[22] Delfino F, Girdinio P, Procopio R, Rossi M, Rachidi F 2011 IEEE Trans. Electromagn. Compat. 53 755
[23] Ren H M, Zhou B H, Rakov V A, Shi L H, Gao C, Yang J H 2008 IEEE Trans. Electromagn. Compat. 50 651
[24] Shoory A, Moini R, Sadeghi S H H, Rakov V A 2005 IEEE Trans. Electromagn. Compat. 47 131
[25] Mimouni A, Rachidi F, Azzouz Z 2008 J. Electrostat. 66 504
[26] Li D M, Wang C, Liu X H 2011 IEEE Trans. Electromagn. Compat. 53 395
[27] Caligaris C, Delfino F, Procopio R 2008 IEEE Trans. Electromagn. Compat. 50 194
[28] He J L, Zeng R 2007 Grounding Technology of Power System (Beijing: Science Press) p23 (in Chinese) [何金良, 曾嵘 2007 电力系统接地技术 (北京: 科学出版社) 第23页]
[29] Philip P B, Thomas A S, Andre R E, Jean P B 1996 IEEE Trans. Power Del. 11 980
[30] Yoshihiro B, Vladimir A R 2005 J. Geophys. Res. 110 D03101
-
[1] Rachidi F 2011 11th International Symposium on Lightning Protection, Fortaleza, Brazil, October 3-7, 2011 p304
[2] Rakov V A, Rachidi F 2009 IEEE Trans. Electromagn. Compat. 51 428
[3] Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 61 039203]
[4] Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201 (in Chinese) [蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘 2011 60 079201]
[5] Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方 2009 58 6616]
[6] Cooray V 2010 IEEE Trans. Electromagn. Compat. 52 936
[7] Delfino F, Procopio R, Rossi M, Rachidi F, Nucci C A 2007 IEEE Trans. Electromagn. Compat. 49 401
[8] Yang C, Zhou B 2004 IEEE Trans. Electromagn. Compat. 46 133
[9] Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨静, 郄秀书, 王建国, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 57 1968]
[10] Yang B, Zhou B H, Gao C, Shi L H, Chen B, Chen H L 2011 IEEE Trans. Electromagn. Compat. 53 256
[11] Kirawanich P, Kranthi N, Gunda R, Stillwell A R, Islam N E 2004 J. Appl. Phys. 96 5892
[12] Delfino F, Procopio R, Rossi M, Rachidi F 2009 J. Geophys. Res. 114
[13] Zhang Q L, Yang J, Jing X Q, Li D S, Wang Z H 2012 Atmos. Res. 104 202
[14] Cooray V, Rakov V A 2011 IEEE Trans. Electromagn. Compat. 53 773
[15] Novak T, Fisher T J 2001 IEEE Trans. Ind. Appl. 37 1555
[16] Petrache E, Rachidi F, Paolone M, Nucci C A, Rakov V A, Uman M A 2005 IEEE Trans. Electromagn. Compat. 47 498
[17] Cooray V 2001 IEEE Trans. Electromagn. Compat. 43 75
[18] Paolone M, Petrache E, Rachidi F, Nucci C A, Rakov V A, Uman M A, Jordan D, Rambo K, Jerauld J, Nyffeler M, Schoene J 2005 IEEE Trans. Electromagn. Compat. 47 509
[19] Yang B, Zhou B H, Chen B, Wang J B, Meng X 2012 IEEE Trans. Electromagn. Compat. 54 323
[20] Yang B, Zhou B H, Meng X 2010 Acta Phys. Sin. 59 8978 (in Chinese) [杨波, 周璧华, 孟鑫 2010 59 8978]
[21] Barbosa C F, Paulino J O S 2010 IEEE Trans. Electromagn. Compat. 52 640
[22] Delfino F, Girdinio P, Procopio R, Rossi M, Rachidi F 2011 IEEE Trans. Electromagn. Compat. 53 755
[23] Ren H M, Zhou B H, Rakov V A, Shi L H, Gao C, Yang J H 2008 IEEE Trans. Electromagn. Compat. 50 651
[24] Shoory A, Moini R, Sadeghi S H H, Rakov V A 2005 IEEE Trans. Electromagn. Compat. 47 131
[25] Mimouni A, Rachidi F, Azzouz Z 2008 J. Electrostat. 66 504
[26] Li D M, Wang C, Liu X H 2011 IEEE Trans. Electromagn. Compat. 53 395
[27] Caligaris C, Delfino F, Procopio R 2008 IEEE Trans. Electromagn. Compat. 50 194
[28] He J L, Zeng R 2007 Grounding Technology of Power System (Beijing: Science Press) p23 (in Chinese) [何金良, 曾嵘 2007 电力系统接地技术 (北京: 科学出版社) 第23页]
[29] Philip P B, Thomas A S, Andre R E, Jean P B 1996 IEEE Trans. Power Del. 11 980
[30] Yoshihiro B, Vladimir A R 2005 J. Geophys. Res. 110 D03101
Catalog
Metrics
- Abstract views: 6418
- PDF Downloads: 591
- Cited By: 0