-
Aiming at the low data rate of traditional direct sequence spread spectrum, M-ary spread spectrum and code shift keying underwater acoustic spread spectrum communication, a new combine method of M-ary code shift keying underwater acoustic spread spectrum communication is proposed based on the small Kasami sequence with good self and mutual correlation. Different sequence information and the same sequence code phase information are used in this method. The influences of self and mutual correlation function on M-ary code shift keying underwater acoustic spread spectrum communication over gaussian and fading channel are analyzed. The performances under the two kinds of channels are simulated. The simulation shows that the ability for M-ary code shift spread spectrum to overcome the noise is better than for the direct sequence spread spectrum, M-ary spread spectrum and code shift keying spread spectrum. The comparative experiment is conducted to compare the M-ary spread spectrum, code shift keying spread spectrum and M-ary code shift keying spread spectrum in the pool. The M-ary code shift keying communication rate of 256.3 bps with no transmitting error in 104 bit data volume is realized.
-
Keywords:
- underwater acoustic communication /
- spread spectrum /
- M-ary /
- code shift keying
[1] Yang L L, Hanzo L 1999 IEEE Trans. Veh. Technol. 48 1984
[2] Bystrom M, Modestino J W 2001 IEEE Trans. Commun. 49 1142
[3] Xiao P, Strom E G 2005 IEEE Trans. Veh. Technol. 54 1400
[4] Hong E S, Kim K J, Whang K C 1996 IEEE Trans. Veh. Technol. 45 57
[5] Yang L L, Hanzo L 2002 IEEE Trans. Commun. 50 956
[6] Yang L L, Hanzo L 2003 IEEE Trans. Commun. 51 748
[7] Stojanovic M, Freitag L 2006 IEEE Oceanic Eng. 31 685
[8] Tsimenidis C C, Hinton O R, Adams A E, Sharif B S 2001 IEEE Oceanic Eng. 26 594
[9] Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 慧娟 2007 56 5915]
[10] Madhukumar A S, Chin F 2004 IEEE Trans. Wireless Commun. 3 1363
[11] Chiang C T 2004 IEEE Proc. Commum. 151 574
[12] Wang H B, Wu L X 2004 Acta Acoustic 29 161 (in Chinese) [王海滨, 吴立新 2004 声学学报 29 161]
[13] He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 58 8379]
-
[1] Yang L L, Hanzo L 1999 IEEE Trans. Veh. Technol. 48 1984
[2] Bystrom M, Modestino J W 2001 IEEE Trans. Commun. 49 1142
[3] Xiao P, Strom E G 2005 IEEE Trans. Veh. Technol. 54 1400
[4] Hong E S, Kim K J, Whang K C 1996 IEEE Trans. Veh. Technol. 45 57
[5] Yang L L, Hanzo L 2002 IEEE Trans. Commun. 50 956
[6] Yang L L, Hanzo L 2003 IEEE Trans. Commun. 51 748
[7] Stojanovic M, Freitag L 2006 IEEE Oceanic Eng. 31 685
[8] Tsimenidis C C, Hinton O R, Adams A E, Sharif B S 2001 IEEE Oceanic Eng. 26 594
[9] Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 慧娟 2007 56 5915]
[10] Madhukumar A S, Chin F 2004 IEEE Trans. Wireless Commun. 3 1363
[11] Chiang C T 2004 IEEE Proc. Commum. 151 574
[12] Wang H B, Wu L X 2004 Acta Acoustic 29 161 (in Chinese) [王海滨, 吴立新 2004 声学学报 29 161]
[13] He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 58 8379]
Catalog
Metrics
- Abstract views: 7376
- PDF Downloads: 542
- Cited By: 0