-
In order to analyze the influence of dielectric truss structure on frequency selective surfaces (FSS) transmission characteristics, as an example, the FSS of Y ring unit and the truss made of polyimide are investigated by the finite difference time domain method. The relevant physical model is developed and pore blocking rate is defined. Through the analysis it is proved that the variations of truss period and rib width will affect the FSS, so they become the main parameters to measure dielectric truss structure, and that the improvement of the aperture stop ratio will increase transmission loss. When truss period changes from infinity to 80 mm the transmittance of passband is reduced by more than 0.9 dB on an average; when the ribs width increases from 0 to 10 mm, the transmittance of passband is reduced by more than 0.6 dB on an average. When aperture stop ratio is lower than 12.11%, the passband produces no shipt. When aperture stop ratio is less than 4.12%, the influence of the truss on FSS is negligible. The FSS specimens is fabricated by coating and lithography process, the dielectric truss is machined by numerically controlled machine, and the microwave measurement is carried out in a dark room. The experimental results and the calculation results are verified to be in good agreement with each other. Therefore the present study presents an experimental and theoretical reference for designing the FSS stealth radar with the dielectric truss structure.
[1] Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys. Sin. 58 505 (in Chinese) [贾宏燕, 高劲松, 冯晓国, 孙连春 2009 58 505]
[2] Li X Q, Gao J S, Zhao J L, Sun L C 2008 Acta Phys. Sin. 57 3803 (in Chinese) [李小秋, 高劲松, 赵晶丽, 孙连春 2008 57 3803]
[3] Fang C Y, Zhang S R, Lu J, Wang J B, Sun L C 2010 Acta Phys. Sin. 59 5023 (in Chinese) [方春易, 张树仁, 卢俊, 王剑波, 孙连春 2010 59 5023]
[4] Pelton E L, Munk B A 1974 IEEE Trans. Anten. Propag. 32 799
[5] Mittra R, Chan C H, Cwik T 1988 IEEE Proc. 76 1593
[6] Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 59 7338]
[7] Munk B A 2000 Frequency Selective Surface: Theory and Design (New York: Wiley)
[8] Meng Z J, Lü M Y, Wu Z, Huang J 2008 Chin. J. Radio Sci. 23 1123 (in Chinese) [蒙志君, 吕明云, 武哲, 黄俊 2008 电波科学学报 23 1123]
[9] Harms P, Mittra R, Ko W 1994 IEEE Trans. Anten. Propag. 42 9
[10] Turner G M, Christodoulou C 1999 IEEE Trans. Anten. Propag. 47 4
-
[1] Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys. Sin. 58 505 (in Chinese) [贾宏燕, 高劲松, 冯晓国, 孙连春 2009 58 505]
[2] Li X Q, Gao J S, Zhao J L, Sun L C 2008 Acta Phys. Sin. 57 3803 (in Chinese) [李小秋, 高劲松, 赵晶丽, 孙连春 2008 57 3803]
[3] Fang C Y, Zhang S R, Lu J, Wang J B, Sun L C 2010 Acta Phys. Sin. 59 5023 (in Chinese) [方春易, 张树仁, 卢俊, 王剑波, 孙连春 2010 59 5023]
[4] Pelton E L, Munk B A 1974 IEEE Trans. Anten. Propag. 32 799
[5] Mittra R, Chan C H, Cwik T 1988 IEEE Proc. 76 1593
[6] Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 59 7338]
[7] Munk B A 2000 Frequency Selective Surface: Theory and Design (New York: Wiley)
[8] Meng Z J, Lü M Y, Wu Z, Huang J 2008 Chin. J. Radio Sci. 23 1123 (in Chinese) [蒙志君, 吕明云, 武哲, 黄俊 2008 电波科学学报 23 1123]
[9] Harms P, Mittra R, Ko W 1994 IEEE Trans. Anten. Propag. 42 9
[10] Turner G M, Christodoulou C 1999 IEEE Trans. Anten. Propag. 47 4
Catalog
Metrics
- Abstract views: 6775
- PDF Downloads: 474
- Cited By: 0