-
The steady-state nonvolatile two-step, two-color holographic recording performance is studied theoretically for LiNbO3:Cu:Ce based on the two-center model, with taking into account the direct electron transfer between the deep-trap center Cu+/Cu2+ and the shallow-trap center Ce3+/Ce4+ due to the tunneling effect. The results show that the total space-charge field is determined by the space-charge field on the deep-trap center, and the direct electron exchange between the Cu+/Cu2+ and the Ce3+/Ce4+ levels through the tunneling effect dominates the charge-transfer process in the two-step, two-color holographic recording. Therefore, the material parameters related to this direct tunneling process play a key role in the two-step, two-color holography performance.
-
Keywords:
- two-center model /
- holographic recording /
- space charge field /
- tunneling effect
[1] Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkar R R 1998 Science 282 1089
[2] Guenther H, Macfarlane R, Furukawa Y, Kitamura K, Neurgaonkar R R 1998 Appl. Opt. 37 7611
[3] Liu Y W, Liu Li R, Guo Y C, Zhou C H 2000 Acta Phys. Sin. 49 880 (in Chinese) [刘友文, 刘立人, 郭迎春, 周常和 2000 49 880]
[4] Fu B, Zhang G Q, Liu X M, Shen Y, Xu Q J, Kong Y F, Chen S L, Xu J J 2008 Acta Phys. Sin. 57 2946 (in Chinese) [付博, 张国权, 刘祥明, 申岩, 徐庆君, 孔勇发, 陈绍林, 许京军 2008 57 2946]
[5] Linde D V, Glass A M 1975 Appl. Phys. 8 85
[6] Linde D V, Glass A M, Rodgers K F 1976 J. Appl. Phys. 47 217
[7] Bai Y S, Neurgaonkar R R, Kachru R 1997 Opt. Lett. 22 334
[8] Bai Y S, Neurgaonkar R R 1997 Phys. Rev. Lett. 78 2944
[9] Ashley J, Jefferson C M, Bernal M P, Marcus B, Burr G W, Macfarlane R M, Coufal H, Shelby R M, Guenther H, Sincerbox G T, Hoffnagle J A 2000 IBM J. Res. Develop. 44 341
[10] Zhang G Q, Sunarno S, Hoshi M, Tomita Y, Yang C, Xu W 2001 Appl. Opt. 40 5248
[11] Jermann F, Otten J 1993 J. Opt. Soc. Am. B 10 2085
[12] Jermann F, Simon M, Krätzig E 1995 J. Opt. Soc. Am. B 12 2066
[13] Kostritskii S M, Sevostyanov O G 1997 Appl. Phys. B 65 527
[14] Berben D, Buse K, Wevering S, Herth P, Imlau M, Woike T J 2000 Appl. Phys. 87 1034
[15] Liu Y W, Liu L R, Zhou C H, Xu L Y 2000 Opt. Lett. 25 908
[16] Liu Y W, Liu L R, Liu D A 2001 Opt. Commun. 190 339
[17] Dong Q M, Liu L R, Liu D A, Dai C X, Ren L Y 2004 Appl. Opt. 43 5016
[18] Shen Y, Zhang G Q, Fu B, Xu Q J, Xu J J 2004 J. Appl. Phys. 96 5405
-
[1] Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkar R R 1998 Science 282 1089
[2] Guenther H, Macfarlane R, Furukawa Y, Kitamura K, Neurgaonkar R R 1998 Appl. Opt. 37 7611
[3] Liu Y W, Liu Li R, Guo Y C, Zhou C H 2000 Acta Phys. Sin. 49 880 (in Chinese) [刘友文, 刘立人, 郭迎春, 周常和 2000 49 880]
[4] Fu B, Zhang G Q, Liu X M, Shen Y, Xu Q J, Kong Y F, Chen S L, Xu J J 2008 Acta Phys. Sin. 57 2946 (in Chinese) [付博, 张国权, 刘祥明, 申岩, 徐庆君, 孔勇发, 陈绍林, 许京军 2008 57 2946]
[5] Linde D V, Glass A M 1975 Appl. Phys. 8 85
[6] Linde D V, Glass A M, Rodgers K F 1976 J. Appl. Phys. 47 217
[7] Bai Y S, Neurgaonkar R R, Kachru R 1997 Opt. Lett. 22 334
[8] Bai Y S, Neurgaonkar R R 1997 Phys. Rev. Lett. 78 2944
[9] Ashley J, Jefferson C M, Bernal M P, Marcus B, Burr G W, Macfarlane R M, Coufal H, Shelby R M, Guenther H, Sincerbox G T, Hoffnagle J A 2000 IBM J. Res. Develop. 44 341
[10] Zhang G Q, Sunarno S, Hoshi M, Tomita Y, Yang C, Xu W 2001 Appl. Opt. 40 5248
[11] Jermann F, Otten J 1993 J. Opt. Soc. Am. B 10 2085
[12] Jermann F, Simon M, Krätzig E 1995 J. Opt. Soc. Am. B 12 2066
[13] Kostritskii S M, Sevostyanov O G 1997 Appl. Phys. B 65 527
[14] Berben D, Buse K, Wevering S, Herth P, Imlau M, Woike T J 2000 Appl. Phys. 87 1034
[15] Liu Y W, Liu L R, Zhou C H, Xu L Y 2000 Opt. Lett. 25 908
[16] Liu Y W, Liu L R, Liu D A 2001 Opt. Commun. 190 339
[17] Dong Q M, Liu L R, Liu D A, Dai C X, Ren L Y 2004 Appl. Opt. 43 5016
[18] Shen Y, Zhang G Q, Fu B, Xu Q J, Xu J J 2004 J. Appl. Phys. 96 5405
Catalog
Metrics
- Abstract views: 6846
- PDF Downloads: 327
- Cited By: 0