-
In the high rate deposition of device grade microcrystalline silicon films and their solar cells, plasma enhanced chemical vapor deposition excited using very high frequency (VHF) has become a mainstream method. Although, great breakthroughs in the experiment are achieved, the depositional mechanism is still a research hot spot and difficulty point. In this paper, the capacitively-coupled hydrogen plasma discharge at VHF is simulated. A two-dimensional, time-dependent axial symmetry model is adopted at a frequency of 75 MHz, and the influences of pressure and plasma power on hydrogen plasma characteristic are simulated. At the same time, the hydrogen plasma is monitored on-line using the optical emission spectrometry in experiment. The results show that the value of the electronic concentration ne takes a maximum in the middle of the plasma bulk, while the electron temperature Te and the number densities of Hα and Hβ each have a maximal value at the place near the sheath and plasma bulk; the potential decreases with pressure increasing from 1 Torr to 5 Torr, the electron concentration in the plasma bulk first increases with the increase of pressure, then decreases with the further increase of pressure, but the electron temperature first decreases and then keeps stable in plasma bulk; the electron concentrations, Hα and Hβ increase linely with power increasing from 30 W to 70 W, but the electron temperature keeps stable. The experimental results and simulation results are in good agreement.
-
Keywords:
- very high frequency /
- hydrogen plasma /
- simulation /
- optical emission spectroscopy
[1] Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283
[2] Novikova T, Kalache B, Bulkin P, Hassouni K, Morscheidt W, Cabarrocas P R I 2003 J. Appl. Phys. 93 3198
[3] Bhandarkar U V, Swihart M T, Girshick S L, Kortshagen U R 2000 J. Phys. D: Appl. Phys. 33 2731
[4] Bleecker K D, Bogaerts A, Goedheer W, Gijbels R 2004 Phys. Rev. E 69 056409
[5] Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8
[6] Nienhuis G J, Goedheer W J, Hamers E A G, van Sark W G J H M, Bezemer J 1997 J. Appl. Phys. 82 2060
[7] Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018
[8] Ge H, Zhang X D, Yue Q, Zhao Y 2008 Acta Phys. Sin. 57 5105 (in Chinese) [葛洪, 张晓丹, 岳强, 赵颖 2008 57 5105]
[9] Zhang X D, Zhang F R, Amanatides E, Mataras D, Zhao Y 2008 Thin Solid Films 516 6829
[10] Marques L, Jolly J, Alves L L 2007 J. Appl. Phys. 102 063305
[11] Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J 2008 Phys. Chem. Ref. Data 37 913
[12] Guo L H, Kondo M, Fukawa M, Saitoh K, Matsuda A 1998 Jpn. J. Appl. Phys. 37 L1116
[13] Michael A, Allen J L (translated by Pu Y K et al.) 2007 Principles of Plasma Discharge and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔·A·力伯曼, 阿伦·J·里登伯格 著, 蒲以康等译 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]
[14] Chingsungnoen A, Wilson J I B, Amornkitbamrung V, Thomas C, Burinprakhon T 2007 Plasma Sources Sci. Technol. 16 434
-
[1] Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283
[2] Novikova T, Kalache B, Bulkin P, Hassouni K, Morscheidt W, Cabarrocas P R I 2003 J. Appl. Phys. 93 3198
[3] Bhandarkar U V, Swihart M T, Girshick S L, Kortshagen U R 2000 J. Phys. D: Appl. Phys. 33 2731
[4] Bleecker K D, Bogaerts A, Goedheer W, Gijbels R 2004 Phys. Rev. E 69 056409
[5] Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8
[6] Nienhuis G J, Goedheer W J, Hamers E A G, van Sark W G J H M, Bezemer J 1997 J. Appl. Phys. 82 2060
[7] Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018
[8] Ge H, Zhang X D, Yue Q, Zhao Y 2008 Acta Phys. Sin. 57 5105 (in Chinese) [葛洪, 张晓丹, 岳强, 赵颖 2008 57 5105]
[9] Zhang X D, Zhang F R, Amanatides E, Mataras D, Zhao Y 2008 Thin Solid Films 516 6829
[10] Marques L, Jolly J, Alves L L 2007 J. Appl. Phys. 102 063305
[11] Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J 2008 Phys. Chem. Ref. Data 37 913
[12] Guo L H, Kondo M, Fukawa M, Saitoh K, Matsuda A 1998 Jpn. J. Appl. Phys. 37 L1116
[13] Michael A, Allen J L (translated by Pu Y K et al.) 2007 Principles of Plasma Discharge and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔·A·力伯曼, 阿伦·J·里登伯格 著, 蒲以康等译 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]
[14] Chingsungnoen A, Wilson J I B, Amornkitbamrung V, Thomas C, Burinprakhon T 2007 Plasma Sources Sci. Technol. 16 434
Catalog
Metrics
- Abstract views: 6823
- PDF Downloads: 515
- Cited By: 0