搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正交传播算子的闪电宽带甚高频辐射源定位方法研究

李书磊 邱实 石立华 李云 段艳涛

引用本文:
Citation:

基于正交传播算子的闪电宽带甚高频辐射源定位方法研究

李书磊, 邱实, 石立华, 李云, 段艳涛

Broadband very high frequency localization of lightning radiation sources based on orthogonal propagator method

Li Shu-Lei, Qiu Shi, Shi Li-Hua, Li Yun, Duan Yan-Tao
PDF
HTML
导出引用
  • 闪电甚高频辐射源定位技术为闪电放电特征及其物理机制的研究提供了重要手段. 基于空间谱估计理论, 可将正交传播算子方法应用于闪电放电通道时空演变过程的成像. 该方法将阵列数据协方差矩阵进行线性分解形成正交传播算子, 然后以子空间的正交性构造空间谱, 通过空间谱搜索实现辐射源定位. 针对闪电宽带甚高频信号, 采用非相干子空间处理方法将带宽内的有效频点进行平均, 减小噪声干扰. 利用数值仿真分析了该方法的定位性能, 验证该方法定位弱辐射源的有效性, 并与时间反转技术进行了对比. 针对人工触发闪电过程的定位结果表明该方法可以较高的时空分辨率清晰地描绘出闪电通道的基本结构及放电通道的发展过程, 并且其对双源同窗事件的定位能力优于时间反转方法. 该方法对提高宽带甚高频阵列在闪电弱辐射源定位、闪电起始机制的研究中的应用价值具有重要意义.
    Broadband very-high frequency (VHF) localization of lightning radiation sources provides an important means for understanding lightning discharge characteristics and the corresponding physical mechanisms. In order to improve the ability to locate weak radiation sources, the orthogonal propagator method (OPM) is proposed to map the space-time evolution process of lightning discharge channels based on the theory of spatial spectrum estimation. In the method, the linear decomposition of the covariance matrix is used to form the orthogonal propagator, and the spatial spectrum is constructed according to orthogonality of subspaces. Then, the location of lightning radiation sources is determined by searching for the maximum of the spatial spectrum. For broadband VHF signals, the non-coherent subspace method is used to average the effective frequency points in bandwidth to reduce noise interference. Based on a multiple-antenna radiation continuous observation system (MARCOS), locating performance of the method is analyzed by numerical simulation. The method is verified by parameters such as locating error, half-peak width of the spatial spectrum, and angular resolution. Compared with the results from the time reversal technique(FDTR), the location error and recognition probability under a low signal to noise ratio (SNR) of the proposed OPM algorithm are similar to those of FDTR algorithm, but the angular resolution for two radiation sources of OPM algorithm is better than that of FDTR algorithm. Finally, the proposed method is used to map the spatial and temporal development of a classical triggered lightning discharge channels in the summer of 2017. The results show that the proposed method can clearly depict the basic structure of lightning discharge channels with high spatial and temporal resolution. For the upward positive leader of the triggered lightning, the OPM algorithm can locate more radiation sources with a better structure than the FDTR algorithm. It implies that the proposed OPM algorithm is better for locating weak radiation sources than the FDTR algorithm. Meanwhile, the OPM algorithm has better performance for resolving two radiation sources in the same window than the FDTR algorithm. As a result, the proposed OPM method is of great significance for improving the application value of broadband VHF arrays in the study of locating weak radiation sources and lightning initiation mechanisms.
      通信作者: 邱实, zeustone@yeah.net
    • 基金项目: 国家自然科学基金(批准号: 41675002) 资助的课题.
      Corresponding author: Qiu Shi, zeustone@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41675002).
    [1]

    Shao X M, Holden D N, Rhodes C T 1996 Geophys. Res. Lett. 23 1917Google Scholar

    [2]

    Dong W, Liu X, Yu Y, Zhang Y 2001 Chin. Sci. Bull. 46 1561Google Scholar

    [3]

    Shao X M, Blaine W, Dingus B, Smith D, Ho C, Caffrey M, Graham P, Haynes B, Bowers G, Rassoul H 2018 J. Geophys. Res.: Atmospheres 123 1

    [4]

    Lyu F, Cummer S A, Qin Z, Chen M 2019 J. Geophys. Res.: Atmospheres 124 2994Google Scholar

    [5]

    Shao X M, Krehbiel P R, Thomas R J, Rison W 1995 J. Geophys. Res. Atmospheres 100 2749Google Scholar

    [6]

    Shao X M, Krehbiel P R 1996 J. Geophys. Res.: Atmospheres 101 26641Google Scholar

    [7]

    Ushio T O, Kawasaki Z I, Ohta Y, Matsuura K 1997 Geophys. Res. Lett. 24 2769Google Scholar

    [8]

    董万胜, 刘欣生, 张义军 2001 科学通报 46 427Google Scholar

    Dong W S, Liu X S, Zhang Y J 2001 Chin. Sci. Bull. 46 427Google Scholar

    [9]

    邱实, 杨波, 董万胜, 高太长 2009 气象科学 29 92Google Scholar

    Qiu S, Yang B, Dong W S, Gao T C 2009 J. Meteorol. Sci. 29 92Google Scholar

    [10]

    Sun Z, Qie X, Liu M, Cao D, Wang D 2013 Atmosph. Res. 129-130 58Google Scholar

    [11]

    Stock M G, Akita M, Krehbiel P R, Rison W, Edens H E, Kawasaki Z, Stanley M A 2014 J. Geophys. Res.: Atmospheres 11 9

    [12]

    Kasemir H W 1960 J. Geophys. Res. 65 1873Google Scholar

    [13]

    Mazur V 2002 C. R. Phys. 3 1393Google Scholar

    [14]

    苟学强, 张义军, 李亚珺, 陈明理 2018 67 205201Google Scholar

    Gou X Q, Zhang Y J, Li Y J, Chen M L 2018 Acta Phys. Sin. 67 205201Google Scholar

    [15]

    Mazur V, Ruhnke L H, Warner T A, Orville R E 2013 J. Electrostat. 71 763Google Scholar

    [16]

    Wang T, Shi Q, Shi L H, Li Y 2017 IEEE Trans. Electromag. Compatibility 59 1949Google Scholar

    [17]

    Wang T, Shi L, Qiu S, Sun Z, Zhang Q, Duan Y, Liu B 2018 IEEE Access 6 26558Google Scholar

    [18]

    Marcos S, Benidir M 1990 Acoustics, Speech, & Signal Processing, on IEEE International Conference France, Albuquerque, New Mexico,USA, 3-6 April 1990

    [19]

    Marcos S, Marsal A, Benidir M 1994 Proceedings of ICASSP '94. IEEEInternational Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia, 19-22 April,1994.

    [20]

    王永良, 陈辉, 彭应宁, 万群 2004 空间谱估计理论与算法 (北京: 清华大学出版社)

    Wang Y L, Chen H, Peng Y N, Wan Q 2004 Spatial Spectrum Estimation Theory and Algorithms (Beijing: Peking University Press) pp18–30 (in Chinese)

    [21]

    张小飞, 汪飞, 徐大专 2010 阵列信号处理的理论和应用 (北京: 国防工业出版社)

    Zhang X F, Wang F, Xu D Z 2010 Theory and Application of Array Signal Processing (Beijing: National Defense Industry Press) pp118–119 (in Chinese)

    [22]

    Ester M, Kriegel H P, Sander J, Xu X Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining Portland, USA, August 02-04,1996 pp226–231

  • 图 1  定位误差与信噪比的关系

    Fig. 1.  Relationship between locating error and SNR.

    图 2  方位角和仰角的HPW与SNR的关系 (a) HPW示意; (b)方位角; (c)仰角

    Fig. 2.  Relationship between HPW and SNR of azimuth and elevation: (a) Sketch map of HPW; (b) azimuth; (c) elevation.

    图 3  MARCOS系统天线布置示意图

    Fig. 3.  Schematic diagram of MARCOS system antennas layout.

    图 4  Trig230553的快电场波形

    Fig. 4.  Fast electric field waveform of Trig230553.

    图 5  Trig230553放电通道的定位结果 (a) VHF阵列定位结果; (b)高速摄像结果

    Fig. 5.  Locating results of discharge channels of Trig230553: (a) Mapping results of VHF arrays; (b) HSV results

    图 6  第二次直窜先导过程

    Fig. 6.  The second dart-leader process.

    图 7  Trig230553上行正先导成像结果比较 (a)宽带OPM方法定位结果; (b)宽带FDTR方法定位结果

    Fig. 7.  Comparison of mapping results for upward positive leader of Trig230553: (a) Mapping results of OPM method; (b) mapping results of FDTR method

    图 8  宽带OPM方法双源定位结果

    Fig. 8.  Mapping results of broad band OPM method for two sources of Trig230553.

    表 1  低信噪比条件下两种算法的识别概率的比较

    Table 1.  Comparison of recognition probabilities of two algorithms under low SNR.

    SNR
    –15 dB–14 dB
    宽带OPM定位算法65.22%98.76%
    宽带FDTR定位算法65.23%98.68%
    下载: 导出CSV

    表 2  不同入射角度时两种方法的最小可分辨角度

    Table 2.  Minimum distinguishable angles of two methods at different incident angles.

    入射角度(θ, φ)
    (30°,30°)(120°,60°)(220°,45°)(320°,80°)
    宽带OPM
    定位方法
    12°
    宽带FDTR
    定位方法
    13°16°
    下载: 导出CSV
    Baidu
  • [1]

    Shao X M, Holden D N, Rhodes C T 1996 Geophys. Res. Lett. 23 1917Google Scholar

    [2]

    Dong W, Liu X, Yu Y, Zhang Y 2001 Chin. Sci. Bull. 46 1561Google Scholar

    [3]

    Shao X M, Blaine W, Dingus B, Smith D, Ho C, Caffrey M, Graham P, Haynes B, Bowers G, Rassoul H 2018 J. Geophys. Res.: Atmospheres 123 1

    [4]

    Lyu F, Cummer S A, Qin Z, Chen M 2019 J. Geophys. Res.: Atmospheres 124 2994Google Scholar

    [5]

    Shao X M, Krehbiel P R, Thomas R J, Rison W 1995 J. Geophys. Res. Atmospheres 100 2749Google Scholar

    [6]

    Shao X M, Krehbiel P R 1996 J. Geophys. Res.: Atmospheres 101 26641Google Scholar

    [7]

    Ushio T O, Kawasaki Z I, Ohta Y, Matsuura K 1997 Geophys. Res. Lett. 24 2769Google Scholar

    [8]

    董万胜, 刘欣生, 张义军 2001 科学通报 46 427Google Scholar

    Dong W S, Liu X S, Zhang Y J 2001 Chin. Sci. Bull. 46 427Google Scholar

    [9]

    邱实, 杨波, 董万胜, 高太长 2009 气象科学 29 92Google Scholar

    Qiu S, Yang B, Dong W S, Gao T C 2009 J. Meteorol. Sci. 29 92Google Scholar

    [10]

    Sun Z, Qie X, Liu M, Cao D, Wang D 2013 Atmosph. Res. 129-130 58Google Scholar

    [11]

    Stock M G, Akita M, Krehbiel P R, Rison W, Edens H E, Kawasaki Z, Stanley M A 2014 J. Geophys. Res.: Atmospheres 11 9

    [12]

    Kasemir H W 1960 J. Geophys. Res. 65 1873Google Scholar

    [13]

    Mazur V 2002 C. R. Phys. 3 1393Google Scholar

    [14]

    苟学强, 张义军, 李亚珺, 陈明理 2018 67 205201Google Scholar

    Gou X Q, Zhang Y J, Li Y J, Chen M L 2018 Acta Phys. Sin. 67 205201Google Scholar

    [15]

    Mazur V, Ruhnke L H, Warner T A, Orville R E 2013 J. Electrostat. 71 763Google Scholar

    [16]

    Wang T, Shi Q, Shi L H, Li Y 2017 IEEE Trans. Electromag. Compatibility 59 1949Google Scholar

    [17]

    Wang T, Shi L, Qiu S, Sun Z, Zhang Q, Duan Y, Liu B 2018 IEEE Access 6 26558Google Scholar

    [18]

    Marcos S, Benidir M 1990 Acoustics, Speech, & Signal Processing, on IEEE International Conference France, Albuquerque, New Mexico,USA, 3-6 April 1990

    [19]

    Marcos S, Marsal A, Benidir M 1994 Proceedings of ICASSP '94. IEEEInternational Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia, 19-22 April,1994.

    [20]

    王永良, 陈辉, 彭应宁, 万群 2004 空间谱估计理论与算法 (北京: 清华大学出版社)

    Wang Y L, Chen H, Peng Y N, Wan Q 2004 Spatial Spectrum Estimation Theory and Algorithms (Beijing: Peking University Press) pp18–30 (in Chinese)

    [21]

    张小飞, 汪飞, 徐大专 2010 阵列信号处理的理论和应用 (北京: 国防工业出版社)

    Zhang X F, Wang F, Xu D Z 2010 Theory and Application of Array Signal Processing (Beijing: National Defense Industry Press) pp118–119 (in Chinese)

    [22]

    Ester M, Kriegel H P, Sander J, Xu X Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining Portland, USA, August 02-04,1996 pp226–231

  • [1] 罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛. 一次人工触发闪电回击过程的光辐射色散特性分析.  , 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [2] 许育培, 李树. 球几何中辐射源粒子抽样方法的改进.  , 2020, 69(11): 119501. doi: 10.7498/aps.69.20200024
    [3] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究.  , 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [4] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制.  , 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [5] 王俊, 王涛, 唐成双, 辛煜. 甚高频激发容性耦合氩等离子体的电子能量分布函数的演变.  , 2016, 65(5): 055203. doi: 10.7498/aps.65.055203
    [6] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展.  , 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [7] 李树, 邓力, 田东风, 李刚. 基于能量密度分布的辐射源粒子空间抽样方法研究.  , 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [8] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计.  , 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [9] 刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘. 飑线系统中的闪电辐射源分布特征及云内电荷结构讨论.  , 2013, 62(21): 219201. doi: 10.7498/aps.62.219201
    [10] 曹冬杰, 郄秀书, 段树, 宣越建, 王东方. 基于VHF辐射源短基线定位系统对闪电放电过程的研究.  , 2012, 61(6): 069202. doi: 10.7498/aps.61.069202
    [11] 王彩霞, 郄秀书, 蒋如斌, 杨静. 一次人工触发闪电上行正先导的传输特征.  , 2012, 61(3): 039203. doi: 10.7498/aps.61.039203
    [12] 李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄. 甚高频电容耦合氢等离子体特性研究.  , 2012, 61(16): 165203. doi: 10.7498/aps.61.165203
    [13] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响.  , 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [14] 张晓丹, 郑新霞, 王光红, 许盛之, 岳强, 林泉, 魏长春, 孙建, 张德坤, 熊绍珍, 耿新华, 赵颖. 单室沉积高效非晶硅/微晶硅叠层太阳电池的研究.  , 2010, 59(11): 8231-8236. doi: 10.7498/aps.59.8231
    [15] 高喜, 杨梓强, 侯钧, 亓丽梅, 兰峰, 史宗君, 李大治, 梁正. 具有变态光子带隙结构的相对论Cherenkov辐射源的研究.  , 2009, 58(2): 1105-1109. doi: 10.7498/aps.58.1105
    [16] 赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方. 人工触发闪电电流波形特征参数分析.  , 2009, 58(9): 6616-6626. doi: 10.7498/aps.58.6616
    [17] 葛 洪, 张晓丹, 岳 强, 赵 静, 赵 颖. 甚高频等离子体增强化学气相沉积大面积平行板电极间真空电势差分布研究.  , 2008, 57(8): 5105-5110. doi: 10.7498/aps.57.5105
    [18] 郭学军, 卢景霄, 陈永生, 张庆丰, 文书堂, 郑 文, 申陈海, 陈庆东. 甚高频高速沉积微晶硅薄膜的研究.  , 2008, 57(9): 6002-6006. doi: 10.7498/aps.57.6002
    [19] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 王 岩, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积制备微晶硅太阳电池的研究.  , 2005, 54(4): 1899-1903. doi: 10.7498/aps.54.1899
    [20] 杨恢东, 吴春亚, 赵 颖, 薛俊明, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积法沉积μc-Si∶H薄膜中氧污染的初步研究.  , 2003, 52(11): 2865-2869. doi: 10.7498/aps.52.2865
计量
  • 文章访问数:  7629
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-10
  • 修回日期:  2019-06-03
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回
Baidu
map