-
A four-level entangled quantum refrigeration cycle working with a two-qubit entangled system is proposed in this paper. Based on the first law of quantum thermodynamics and the concept of thermal entanglement, the relation between the quantum entanglement and the several thermodynamic quantities such as the heat transfer, the input work and the coefficient of performance is analyzed. It is found that the isoline of the coefficient of performance is the loop line and it no longer monotonically changes with the ratio of entanglement; in a small exchange constant J the operation region of the refrigerator is c1>c2 and in a larger exchange constant J the operation region of the refrigerator may be c1>c2 or c1c2; the maximal coefficient of performance increases as the exchange constant increases.
[1] Sisman A, Saygin H 2001 Appl. Energ. 68 367
[2] Saygin H, Sisman A 2001 J. Appl. Phys. 90 3086
[3] He J Z, Chen J C, Hua B 2002 Phys. Rev. E 65 036145
[4] Wu F, Chen L G, Sun F R, Wu C H, Li Q 2006 Phys. Rev. E 73 016103
[5] He J Z, Xin Y, He X 2007 Appl. Energ. 84 176
[6] Wu F, Chen L, Wu S, Sun F 2006 J. Phys. D: Appl. Phys. 39 4731
[7] Lin B H, Chen J C 2003 Phys. Rev. E 67 046105
[8] He J Z, He X, Tang W 2009 Sci. Chin. Ser. G 52 1317
[9] Wang J H, He J Z, Mao Z Y 2007 Sci. Chin. Ser. G 50 163
[10] Rezek Y, Kosloff R 2006 New J. Phys. 8 83
[11] Geva E, Kosloff R 1992 J. Chem. Phys. 97 4398
[12] Liu X, Chen L, Wu F, Sun F 2009 Sci. Chin. Ser. G 52 1976
[13] Bender C M, Brody D C, Meister B K 2000 J. Phys. A 33 4427
[14] Scully M O 2001 Phys. Rev. Lett. 87 220601
[15] Scully M O, Zubairy M S, Agarwal G S, Walther H 2003 Science 299 862
[16] Kieu T D 2004 Phys. Rev. Lett. 93 140403
[17] Xi X Q, Chen W X, Hao S R, Yue R H 2002 Phys. Lett. A 300 567
[18] Wang X G 2001 Phys. Rev. A 64 012313
[19] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[20] Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901
[21] Guo Z, Yan L S, Pan W, Luo B and Xu M F 2011 Acta Phys. Sin. 60 060301 ( in Chinese) [郭振, 闫连山, 潘伟, 罗斌, 徐明峰 2011 60 060301]
[22] Lu D M 2011 Acta Phys. Sin. 60 090302 (in Chinese) [卢道明 2011 60 090302]
[23] Zhang T, Liu W T, Chen P X, Li C Z 2007 Phys. Rev. A 75 062102
[24] Wang H, Liu S Q, He J Z 2009 Phys. Rev. E 79 041113
[25] Zhang G F 2008 Eur. Phys. J. D 49 123
[26] Thomas G, Johal R S 2011 Phys. Rev. E 83 031135
[27] Messiah A 1999 Quantum Mechanics (Dover, New York)
-
[1] Sisman A, Saygin H 2001 Appl. Energ. 68 367
[2] Saygin H, Sisman A 2001 J. Appl. Phys. 90 3086
[3] He J Z, Chen J C, Hua B 2002 Phys. Rev. E 65 036145
[4] Wu F, Chen L G, Sun F R, Wu C H, Li Q 2006 Phys. Rev. E 73 016103
[5] He J Z, Xin Y, He X 2007 Appl. Energ. 84 176
[6] Wu F, Chen L, Wu S, Sun F 2006 J. Phys. D: Appl. Phys. 39 4731
[7] Lin B H, Chen J C 2003 Phys. Rev. E 67 046105
[8] He J Z, He X, Tang W 2009 Sci. Chin. Ser. G 52 1317
[9] Wang J H, He J Z, Mao Z Y 2007 Sci. Chin. Ser. G 50 163
[10] Rezek Y, Kosloff R 2006 New J. Phys. 8 83
[11] Geva E, Kosloff R 1992 J. Chem. Phys. 97 4398
[12] Liu X, Chen L, Wu F, Sun F 2009 Sci. Chin. Ser. G 52 1976
[13] Bender C M, Brody D C, Meister B K 2000 J. Phys. A 33 4427
[14] Scully M O 2001 Phys. Rev. Lett. 87 220601
[15] Scully M O, Zubairy M S, Agarwal G S, Walther H 2003 Science 299 862
[16] Kieu T D 2004 Phys. Rev. Lett. 93 140403
[17] Xi X Q, Chen W X, Hao S R, Yue R H 2002 Phys. Lett. A 300 567
[18] Wang X G 2001 Phys. Rev. A 64 012313
[19] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[20] Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901
[21] Guo Z, Yan L S, Pan W, Luo B and Xu M F 2011 Acta Phys. Sin. 60 060301 ( in Chinese) [郭振, 闫连山, 潘伟, 罗斌, 徐明峰 2011 60 060301]
[22] Lu D M 2011 Acta Phys. Sin. 60 090302 (in Chinese) [卢道明 2011 60 090302]
[23] Zhang T, Liu W T, Chen P X, Li C Z 2007 Phys. Rev. A 75 062102
[24] Wang H, Liu S Q, He J Z 2009 Phys. Rev. E 79 041113
[25] Zhang G F 2008 Eur. Phys. J. D 49 123
[26] Thomas G, Johal R S 2011 Phys. Rev. E 83 031135
[27] Messiah A 1999 Quantum Mechanics (Dover, New York)
Catalog
Metrics
- Abstract views: 7558
- PDF Downloads: 538
- Cited By: 0