-
The effects of FeAl(B2) microalloyed with rare earth element (REEs) La, Ac, Sc and Y on structural, elastic and electronic properties are investigated by first-principles calculation based on the density function theory (DFT). The calculation results show that the REEs Y tend to be substituted for Fe site, while La, Ac and Sc tend to be substituted for Al site, and Ac causes the largest lattice distortion. The calculation results of elastic properties show that the ductility of FeAl(B2) is improved by the addition of La, Ac, Sc and Y. The Fe7Al8Sc has better ductility and hardness. The effect of REEs on the performance of alloy is attributed to the variation of hybridization between Fe and Al electrons. The calculation results are in accordance with experimental and theoretical results.
-
Keywords:
- density of states /
- electronic structure /
- elastic constants /
- first-principle
[1] Deevi S C, Sikka V K 1996 Intermetallics 4 357
[2] Schneibel J H, Carmichael C A, Specht E D, Subramanian R 1996 Intermetallics 5 61
[3] Morris D G, Chao J 2004 Intermetallics 12 821
[4] George E P, Yamaguchi M, Kumar K S, Liu C T 1994 Ann. Rev. Mater. Sci. 25 409
[5] Zhong X P, Deng W, Tang Y S, Xiong L Y, Wang S H, Guo J T, Long Q W 1998 Acta Phys. Sin. 47 1734 (in Chinese) 钟夏平, 邓 文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威 1998 47 1734
[6] Deevi S C, Sikka V K 1996 Intermetallics 4 361
[7] Deevi S C 2000 Intermetallics 8 679
[8] Morris D G, Morris-Munoz M A 1999 Intermetallics 7 1121
[9] Skoglund H, Knutson M, Karlsson B 2004 Intermetallics 12 977
[10] Palm M, Sauthoff G 2004 Intermetallics 12 1345
[11] Krein R, Schneider A, Sauthoff G, Frommeyer G 2007 Intermetallics 15 1172
[12] Schneider A, Falat L, Sauthoff G, Frommeyer G 2003 Intermetallics 11 443
[13] Morris M A, Morris D G 1990 Acta Metall Mater 38 551
[14] Arzt E, Behr R, Grahle P, Mason R P 1997 Mater Sci. Eng. A 234 22
[15] Guo J T, Huai K W, Gao Q 2007 Intermetallics 15 727
[16] Vanderbilt D 1990 Phys. Rev. B 41 7892
[17] Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671
[18] Fuks D, Strutz A, Kiv A 2006 Intermetallics 14 1245
[19] Zhang B, So.a WA 1994 Scr Metall Mater 30 683
[20] Nguyen-Manh D, Pettifor D G 1999 Intermetallics 7 1095
[21] Pugh S F 1954 Philos. Mag. 45 823
[22] Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951
[23] Xu J, Freeman A J 1990 Phys. Rev. B 41 12553
[24] Colinet C, Pasturel A, Bushow K H J 1988 Physica B 150 397
-
[1] Deevi S C, Sikka V K 1996 Intermetallics 4 357
[2] Schneibel J H, Carmichael C A, Specht E D, Subramanian R 1996 Intermetallics 5 61
[3] Morris D G, Chao J 2004 Intermetallics 12 821
[4] George E P, Yamaguchi M, Kumar K S, Liu C T 1994 Ann. Rev. Mater. Sci. 25 409
[5] Zhong X P, Deng W, Tang Y S, Xiong L Y, Wang S H, Guo J T, Long Q W 1998 Acta Phys. Sin. 47 1734 (in Chinese) 钟夏平, 邓 文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威 1998 47 1734
[6] Deevi S C, Sikka V K 1996 Intermetallics 4 361
[7] Deevi S C 2000 Intermetallics 8 679
[8] Morris D G, Morris-Munoz M A 1999 Intermetallics 7 1121
[9] Skoglund H, Knutson M, Karlsson B 2004 Intermetallics 12 977
[10] Palm M, Sauthoff G 2004 Intermetallics 12 1345
[11] Krein R, Schneider A, Sauthoff G, Frommeyer G 2007 Intermetallics 15 1172
[12] Schneider A, Falat L, Sauthoff G, Frommeyer G 2003 Intermetallics 11 443
[13] Morris M A, Morris D G 1990 Acta Metall Mater 38 551
[14] Arzt E, Behr R, Grahle P, Mason R P 1997 Mater Sci. Eng. A 234 22
[15] Guo J T, Huai K W, Gao Q 2007 Intermetallics 15 727
[16] Vanderbilt D 1990 Phys. Rev. B 41 7892
[17] Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671
[18] Fuks D, Strutz A, Kiv A 2006 Intermetallics 14 1245
[19] Zhang B, So.a WA 1994 Scr Metall Mater 30 683
[20] Nguyen-Manh D, Pettifor D G 1999 Intermetallics 7 1095
[21] Pugh S F 1954 Philos. Mag. 45 823
[22] Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951
[23] Xu J, Freeman A J 1990 Phys. Rev. B 41 12553
[24] Colinet C, Pasturel A, Bushow K H J 1988 Physica B 150 397
Catalog
Metrics
- Abstract views: 8401
- PDF Downloads: 765
- Cited By: 0