Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modification of zigzag graphene nanoribbons by patterning vacancies

Zhang Yu Liu Lian-Qing Jiao Nian-Dong Xi Ning Wang Yue-Chao Dong Zai-Li

Citation:

Modification of zigzag graphene nanoribbons by patterning vacancies

Zhang Yu, Liu Lian-Qing, Jiao Nian-Dong, Xi Ning, Wang Yue-Chao, Dong Zai-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The transport properties of zigzag graphene nanoribbons (ZGNRs) with different patterns of vacancies are investigated by using the density functional theory and nonequilibrium Green's function (NEGF) formalism. It is found that the transport properties vary with lattice type vacancy. For two vacancies, A-B type vacancies have the most significant influence on the conductance of ZGNRs, while A-A type vacancies have the most slightly influence on the conductance. More importantly, the pattern of vacancies has enormous influence on electron transport around the Femi energy. As hexagon carbons are removed, the ZGNRs will be modified, changing from metallic to semiconducting. This lays the theoretical foundation for tuning the electron properties of ZGNRs by patterning vacancies.
    • Funds: Project supported by the National Natural Science Foundation of China (Project Nos. 60904095, 51050110445, 61175103), the National High Technology Research and Development Program of China (Grant No. 2009AA03Z316), and the CAS FEA International Partnership Program for Creative Research Teams.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Li X L, Wang X R, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [3]
    [4]

    Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803

    [5]
    [6]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris Ph 2010 Science 327 662

    [7]
    [8]

    Grosse K L, Bae M H, Lian F, Pop E, King W P 2011 Nature Nanotechnology 6 287

    [9]
    [10]
    [11]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [12]

    Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndic M 2010 Nano Lett. 10 3163

    [13]
    [14]

    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A 2010 Nature 467 190

    [15]
    [16]

    Wang X, Zhi L J, Mllen K 2008 Nano Lett. 8 323

    [17]
    [18]

    Miler J R, Outlaw R A, Holloway B C 2010 Science 329 1637

    [19]
    [20]
    [21]

    Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [22]
    [23]

    Son Y W, Cohen M L, Louie S G 2006 Nature (London) 444 347

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [25]
    [26]
    [27]

    Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida 2009 Phys. Rev. Lett. 94 082107

    [28]
    [29]

    Han M Y, Ozyilmaz B, Zhang Y, Kim Ph 2007 Phys. Rev. Lett. 98 206805

    [30]

    Tapaszto L, Dobrik G, Lambin Ph, Biro L P 2008 Nat Nanotechnol 3 397

    [31]
    [32]
    [33]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356

    [34]
    [35]

    Pan H J, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 [潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙 2010 59 6443]

    [36]

    Ma L, Tan Z P. Tan C L, Liu G T, Yang C L, Lv L 2011 Acta Phys. Sin. 60 107302 [马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力 2011 60 107302]

    [37]
    [38]

    Elias D C, Nair R R, Mohiuddin T M G., Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [39]
    [40]
    [41]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401

    [42]
    [43]

    Boukhvalov D W, Katsnelson M I, Lichtenstein A I 2008 Phys. Rev. B 77 035427

    [44]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [45]
    [46]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [47]
    [48]

    Wang X R, Li X L, Zhang L, Yoon Y K, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [49]
    [50]
    [51]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 [林琦, 陈余行, 吴建宝, 孔宗敏 2011 60 097103]

    [52]
    [53]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano. Lett. 7 2295

    [54]
    [55]

    Kan E J, Li Z, Yang J, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [56]
    [57]

    Cervantes-Sodi F, Csanyi G, Piscanec S, Ferrari A C 2008 Phys. Rev. B 77 165427

    [58]
    [59]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [60]
    [61]

    KimW Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [62]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 [王雪梅, 刘红 2011 60 047102]

    [63]
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Li X L, Wang X R, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [3]
    [4]

    Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803

    [5]
    [6]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris Ph 2010 Science 327 662

    [7]
    [8]

    Grosse K L, Bae M H, Lian F, Pop E, King W P 2011 Nature Nanotechnology 6 287

    [9]
    [10]
    [11]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [12]

    Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndic M 2010 Nano Lett. 10 3163

    [13]
    [14]

    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A 2010 Nature 467 190

    [15]
    [16]

    Wang X, Zhi L J, Mllen K 2008 Nano Lett. 8 323

    [17]
    [18]

    Miler J R, Outlaw R A, Holloway B C 2010 Science 329 1637

    [19]
    [20]
    [21]

    Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [22]
    [23]

    Son Y W, Cohen M L, Louie S G 2006 Nature (London) 444 347

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [25]
    [26]
    [27]

    Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida 2009 Phys. Rev. Lett. 94 082107

    [28]
    [29]

    Han M Y, Ozyilmaz B, Zhang Y, Kim Ph 2007 Phys. Rev. Lett. 98 206805

    [30]

    Tapaszto L, Dobrik G, Lambin Ph, Biro L P 2008 Nat Nanotechnol 3 397

    [31]
    [32]
    [33]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356

    [34]
    [35]

    Pan H J, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 [潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙 2010 59 6443]

    [36]

    Ma L, Tan Z P. Tan C L, Liu G T, Yang C L, Lv L 2011 Acta Phys. Sin. 60 107302 [马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力 2011 60 107302]

    [37]
    [38]

    Elias D C, Nair R R, Mohiuddin T M G., Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [39]
    [40]
    [41]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401

    [42]
    [43]

    Boukhvalov D W, Katsnelson M I, Lichtenstein A I 2008 Phys. Rev. B 77 035427

    [44]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [45]
    [46]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [47]
    [48]

    Wang X R, Li X L, Zhang L, Yoon Y K, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [49]
    [50]
    [51]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 [林琦, 陈余行, 吴建宝, 孔宗敏 2011 60 097103]

    [52]
    [53]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano. Lett. 7 2295

    [54]
    [55]

    Kan E J, Li Z, Yang J, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [56]
    [57]

    Cervantes-Sodi F, Csanyi G, Piscanec S, Ferrari A C 2008 Phys. Rev. B 77 165427

    [58]
    [59]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [60]
    [61]

    KimW Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [62]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 [王雪梅, 刘红 2011 60 047102]

    [63]
  • [1] Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi. Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films. Acta Physica Sinica, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [3] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] Cao Ping, Luo Cheng-Lin, Chen Gui-Hu, Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei. Flux controllable pumping of water molecules in a double-walled carbon nanotube. Acta Physica Sinica, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [5] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [6] Chen Yan-Qiu. Calculation of transport coefficients of a xenon plasma. Acta Physica Sinica, 2014, 63(20): 205201. doi: 10.7498/aps.63.205201
    [7] Wang Ding, Zhang Zhen-Hua, Deng Xiao-Qing, Fan Zhi-Qiang. Electrical and magnetic properties of graphene nanoribbons with BN-chain doping. Acta Physica Sinica, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [8] Wang Hai-Xing, Sun Su-Rong, Chen Shi-Qiang. Calculation of two-temperature transport coefficients of helium plasma. Acta Physica Sinica, 2012, 61(19): 195203. doi: 10.7498/aps.61.195203
    [9] Zhang Qiu-Hui, Han Jing-Hua, Feng Guo-Ying, Xu Qi-Xing, Ding Li-Zhong, Lu Xiao-Xiang. Raman spectrum research on graphene modification under high intensity laser. Acta Physica Sinica, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [10] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [11] Chen Jun, Shi Lin, Wang Nan, Bi Sheng-Shan. The analysis of transport properties stability in molecular dynamics simulations. Acta Physica Sinica, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [12] Cheng Li, Wang Li-Li, Pu Shi-Zhou, Hu Ni, Zhang Yue, Liu Yong, Wei Wei, Xiong Rui, Shi Jing. Structure and electric transport properties of the spin ladder compound Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co). Acta Physica Sinica, 2010, 59(2): 1155-1162. doi: 10.7498/aps.59.1155
    [13] Wang Xiao-Po, Song Bo, Wu Jiang-Tao, Liu Zhi-Gang. Prediction of transport properties of O2-CO2 mixtures based on the inversion method. Acta Physica Sinica, 2010, 59(10): 7158-7163. doi: 10.7498/aps.59.7158
    [14] Xu Gen-Jian, Tan Wei-Shi, Cao Hui, Deng Kai-Ming, Wu Xiao-Shan. Study on structural and transport properties of nonstoichiometric La0.67Sr0.33-x□xMnO3. Acta Physica Sinica, 2009, 58(1): 378-383. doi: 10.7498/aps.58.378
    [15] Ouyang Fang-Ping, Wang Xiao-Jun, Zhang Hua, Xiao Jin, Chen Ling-Na, Xu Hui. The divacancy-defect effect of armchair graphene nanoribbons. Acta Physica Sinica, 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [16] Ouyang Fang-Ping, Xu Hui, Lin Feng. The electronic structure and transport properties ofgraphene nanoribbons with divacancies defects. Acta Physica Sinica, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [17] Ouyang Fang-Ping, Xu Hui, Wei Chen. First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons. Acta Physica Sinica, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] Ouyang Fang-Ping, Wang Huan-You, Li Ming-Jun, Xiao Jin, Xu Hui. Study on electronic structure and transport properties of graphene nanoribbons with single vacancy defects. Acta Physica Sinica, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [19] Zeng Hui, Hu Hui-Fang, Wei Jian-Wei, Xie Fang, Peng Ping. Electronic transport properties of single-wall carbon nanotube with pentagon-heptagon-pair defect. Acta Physica Sinica, 2006, 55(9): 4822-4827. doi: 10.7498/aps.55.4822
    [20] Li Peng-Fei, Yan Xiao-Hong, Wang Ru-Zhi. . Acta Physica Sinica, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
Metrics
  • Abstract views:  8096
  • PDF Downloads:  647
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2011
  • Accepted Date:  23 November 2011
  • Published Online:  05 July 2012

/

返回文章
返回
Baidu
map