-
In this paper, the spatial optical dark soliton filamentization in a nonlocal self-defocusing Kerr medium is investigated. Theoretically, starting from nonlocal nonlinear theoretical model, we examine the influences of the degree of nonlocality and the attenuation constant on the formation of dark soliton filaments by numerical simulation method. We find that when the input background optical intensity is determined, the greater the degree of nonlocality, the farther the initial point of the formation of dark filaments is and the less the number of dark filaments decreases with the increase of the degree of nonlocality; when the ratio of the background optical intensity to the critical optical intensity is fixed, the degree of nonlocality can hardly influence the number of dark filaments and the number of dark filaments under nonlocality is equal to that under locality. Besides, when the input background optical intensity is determined, the number of dark filaments decreases with the increase of the attenuation constant. Experimentally, by changing the concentration of dye solution and the ellipticity of background light, we discuss the influences of the concentration of sample and the ellipticity of background light on the formation of dark soliton filaments respectively and find that when the input background average optical intensity is determined, the number of dark filaments decreases with the increases of the concentration of sample and the ellipticity of background light; when the ratio of the background average optical intensity to the critical optical intensity is fixed, the concentration of sample can hardly influence the number of dark filaments. Besides, the phenomenon of optical shock wave is found in our experiment.
[1] Kivshar Y S, Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)
[2] Snyder A W, Mitchell D J 1997 Science 276 1538
[3] Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902
[4] Peccianti M, Brzdakiewicz K A, Assanto G 2002 Opt. Lett. 27 16
[5] Hu W, Zhang T, Guo Q, Xuan L, Lan S 2006 Appl. Phys. Lett. 89 071111
[6] Serak S V, Tabiryan N V, Peccianti M, Assanto G 2006 IEEE Photon. Techn. Lett. 18 1094
[7] Ouyang S G, Guo Q 2007 Phys. Rev. A 76 053833
[8] Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842
[9] Rotschild C, Cohen O, Manela O, Segev M 2005 Phys. Rev. Lett. 95 213904
[10] Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901
[11] Krolikowski W, Bang O 2000 Phys. Rev. E 63 016610
[12] Dreischuh A, Neshev D N, Petersen D E, Bang O, Krolikowski W 2006 Phys. Rev. Lett. 96 043901
[13] Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286
[14] Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902
[15] Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240
[16] Kamchatnov A M, Kraenkel R A, Umarov B A 2002 Phys. Rev. E 66 036609
[17] Bettelheim E, Abanov A G, Wiegmann P 2006 Phys. Rev. Lett. 97 246401
[18] Whitman G B 1974 Linear and Nonlinear Waves (New York: Wiley)
[19] Ghofraniha N, Conti C, Ruocco G, Trillo S 2007 Phys. Rev. Lett. 99 043903
[20] Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 60 044208]
[21] Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612
[22] Ouyang S G, Guo Q 2009 Opt. Express 17 5170
-
[1] Kivshar Y S, Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)
[2] Snyder A W, Mitchell D J 1997 Science 276 1538
[3] Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902
[4] Peccianti M, Brzdakiewicz K A, Assanto G 2002 Opt. Lett. 27 16
[5] Hu W, Zhang T, Guo Q, Xuan L, Lan S 2006 Appl. Phys. Lett. 89 071111
[6] Serak S V, Tabiryan N V, Peccianti M, Assanto G 2006 IEEE Photon. Techn. Lett. 18 1094
[7] Ouyang S G, Guo Q 2007 Phys. Rev. A 76 053833
[8] Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842
[9] Rotschild C, Cohen O, Manela O, Segev M 2005 Phys. Rev. Lett. 95 213904
[10] Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901
[11] Krolikowski W, Bang O 2000 Phys. Rev. E 63 016610
[12] Dreischuh A, Neshev D N, Petersen D E, Bang O, Krolikowski W 2006 Phys. Rev. Lett. 96 043901
[13] Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286
[14] Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902
[15] Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240
[16] Kamchatnov A M, Kraenkel R A, Umarov B A 2002 Phys. Rev. E 66 036609
[17] Bettelheim E, Abanov A G, Wiegmann P 2006 Phys. Rev. Lett. 97 246401
[18] Whitman G B 1974 Linear and Nonlinear Waves (New York: Wiley)
[19] Ghofraniha N, Conti C, Ruocco G, Trillo S 2007 Phys. Rev. Lett. 99 043903
[20] Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 60 044208]
[21] Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612
[22] Ouyang S G, Guo Q 2009 Opt. Express 17 5170
Catalog
Metrics
- Abstract views: 6837
- PDF Downloads: 821
- Cited By: 0