搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非相干耦合的亮和暗光伏空间孤子对的偏转特性

崔虎 张冰志 佘卫龙

引用本文:
Citation:

非相干耦合的亮和暗光伏空间孤子对的偏转特性

崔虎, 张冰志, 佘卫龙

Deflection characteristics of incoherent coupled bright and dark photovoltaic spatial soliton pairs

Cui Hu, Zhang Bing-Zhi, She Wei-Long
PDF
导出引用
  • 采用数值方法研究了在一个具有扩散效应的光伏光折变晶体中的非相干耦合的亮和暗光伏空间孤子对的偏转特性.结果表明,由于非相干相互作用,晶体中的一个亮孤子和一个暗孤子互相俘获,且两个孤子的中心沿着相同的轨迹移动.发现,当亮孤子的入射峰值强度不变时,通过调节暗孤子的入射背景强度可以控制亮孤子的偏转;当暗孤子的入射背景强度处于一个特殊值时,亮孤子的偏转被抑制,而当暗孤子的入射背景强度偏离这个特殊值时,亮孤子发生偏转.同样,当暗孤子的入射背景强度不变时,其偏转可以通过调节亮孤子的入射峰值强度来控制.
    We numerically investigate the deflection characteristics of incoherent coupled bright and dark photovoltaic spatial soliton pairs in a photovoltaic photorefractive crystal with diffusion effect. The numerical results show that, owing to the incoherent interaction, a bright soliton and a dark soliton in the crystal trap each other and the centers of the two solitons move along the same trajectory. It is found that, the deflection of the bright soliton can be controlled by adjusting the input background intensity of the dark soliton when the input peak intensity of the bright soliton is fixed; and the deflection of the bright soliton is suppressed when the input background intensity of the dark soliton is at a special value, while the bright soliton undergoes a deflection when the input background intensity of the dark soliton deviates from this special value. Also, the deflection of the dark soliton can be controlled by adjusting the input peak intensity of the bright soliton when the input background intensity of the dark soliton is fixed.
    • 基金项目: 国家自然科学基金(批准号:10874251)资助的课题.
    [1]

    [1]Segev M, Crosignani B, Yariv A, Fischer B 1992 Phys. Rev. Lett. 68 923

    [2]

    [2]Duree G, Shultz J L, Salamo G, Segev M, Yariv A, Crosignani B, Porto P D, Sharp E, Neurgaonkar R R 1993 Phys. Rev. Lett. 71 533

    [3]

    [3]Duree G, Morin M, Salamo G, Segev M, Crosignani B, Porto P D, Sharp E, Yariv A 1995 Phys. Rev. Lett. 74 1978

    [4]

    [4]Zhang Y, Hou C F, Sun X D 2007 Chin. Phys. 16 0159

    [5]

    [5]Lu K Q, Zhao W, Zhang L, Li K H, Zhang Y Q, Liu X M, Zhang Y P, Xu J J 2008 Opt. Commun. 281 2913

    [6]

    [6]Ciattoni A, Marini A, Rizza C, DelRe E 2009 Opt. Lett. 34 911

    [7]

    [7]Segev M, Valley G C, Crosignani B, Porto P D, Yariv A 1994 Phys. Rev. Lett. 73 3211

    [8]

    [8]Christodoulides D N, Carvalho M I 1995 J. Opt. Soc. Am. B 12 1628

    [9]

    [9]Chen Z G, Mitchell M, Shih M F, Segev M, Garrett M H, Valley G C 1996 Opt. Lett. 21 629

    [10]

    ]Shih M F, Leach P, Segev M, Garrett M H, Salamo G, Valley G C 1996 Opt. Lett. 21 324

    [11]

    ]She W L, Lee K K, Lee W K 2000 Phys. Rev. Lett. 85 2498

    [12]

    ]She W L, Lee K K, Lee W K 1999 Phys. Rev. Lett. 83 3182

    [13]

    ]She W L, Chan C W, Lee W K 2001 Opt. Lett. 26 1093

    [14]

    ]She W L, Xu C C, Guo B, Lee W K 2006 J. Opt. Soc. Am. B 23 2121

    [15]

    ]Jiang D S, Ouyang S G, She W L 2004 Acta Phys. Sin. 53 3777 (in Chinese)[江德生、欧阳世根、佘卫龙 2004 53 3777]

    [16]

    ]Liu J S, Lu K Q 1998 Acta Phys. Sin. 47 1509 (in Chinese)[刘劲松、卢克清 1998 47 1509]

    [17]

    ]Liu J S, Lu K Q 1999 J. Opt. Soc. Am. B 16 550

    [18]

    ]Hou C F, Yuan B H, Sun X D, Xu K B 2000 Acta Phys. Sin. 49 1969 (in Chinese)[侯春风、袁保红、孙秀冬、许克彬 2000 49 1969]

    [19]

    ]Fazio E, Renzi F, Rinaldi R, Bertolotti M, Chauvet M, Ramadan W, Petris A, Vlad V I 2004 Appl. Phys. Lett. 85 2193

    [20]

    ]Lu K Q, Yang Y L, Zhao W, Zhang M Z, Yang Y, Zhang L, Liu X M, Zhang Y P 2007 Chin. Phys. 16 3423

    [21]

    ]Liu S X, Liu J S, Cai X, Fan T, Zhang G Y 2008 Chin. Phys. B 17 3771

    [22]

    ]Chauvet M, Coda V, Maillotte H, Fazio E, Salamo G 2005 Opt. Lett. 30 1977

    [23]

    ]Pismennaya K, Kashin O, Matusevich V, Kiessling A, Kowarschik R 2008 J. Opt. Soc. Am. B 25 136

    [24]

    ]Carvalho M I, Singh S R, Christodoulides D N 1995 Opt. Commun. 120 311

    [25]

    ]Carvalho M I, Facao M, Christodoulides D N 2007 Phys. Rev. E 76 016602

    [26]

    ]Yan L F, Wang H C, She W L 2006 Acta Phys. Sin. 55 5257 (in Chinese)[颜利芬、王红成、佘卫龙 2006 55 5257]

    [27]

    ]Yan L F, Wang H C, Zhang B Z, She W L 2007 Acta Phys. 2 Sin. 56 4627 (in Chinese)[颜利芬、王红成、张冰志、佘卫龙 2007 56 4627]

    [28]

    ]Cui H, Zhang B Z, She W L 2008 J. Opt. Soc. Am. B 25 1756

    [29]

    ]Zhang G Y, Liu J S 2006 Opt. Commun. 266 691

  • [1]

    [1]Segev M, Crosignani B, Yariv A, Fischer B 1992 Phys. Rev. Lett. 68 923

    [2]

    [2]Duree G, Shultz J L, Salamo G, Segev M, Yariv A, Crosignani B, Porto P D, Sharp E, Neurgaonkar R R 1993 Phys. Rev. Lett. 71 533

    [3]

    [3]Duree G, Morin M, Salamo G, Segev M, Crosignani B, Porto P D, Sharp E, Yariv A 1995 Phys. Rev. Lett. 74 1978

    [4]

    [4]Zhang Y, Hou C F, Sun X D 2007 Chin. Phys. 16 0159

    [5]

    [5]Lu K Q, Zhao W, Zhang L, Li K H, Zhang Y Q, Liu X M, Zhang Y P, Xu J J 2008 Opt. Commun. 281 2913

    [6]

    [6]Ciattoni A, Marini A, Rizza C, DelRe E 2009 Opt. Lett. 34 911

    [7]

    [7]Segev M, Valley G C, Crosignani B, Porto P D, Yariv A 1994 Phys. Rev. Lett. 73 3211

    [8]

    [8]Christodoulides D N, Carvalho M I 1995 J. Opt. Soc. Am. B 12 1628

    [9]

    [9]Chen Z G, Mitchell M, Shih M F, Segev M, Garrett M H, Valley G C 1996 Opt. Lett. 21 629

    [10]

    ]Shih M F, Leach P, Segev M, Garrett M H, Salamo G, Valley G C 1996 Opt. Lett. 21 324

    [11]

    ]She W L, Lee K K, Lee W K 2000 Phys. Rev. Lett. 85 2498

    [12]

    ]She W L, Lee K K, Lee W K 1999 Phys. Rev. Lett. 83 3182

    [13]

    ]She W L, Chan C W, Lee W K 2001 Opt. Lett. 26 1093

    [14]

    ]She W L, Xu C C, Guo B, Lee W K 2006 J. Opt. Soc. Am. B 23 2121

    [15]

    ]Jiang D S, Ouyang S G, She W L 2004 Acta Phys. Sin. 53 3777 (in Chinese)[江德生、欧阳世根、佘卫龙 2004 53 3777]

    [16]

    ]Liu J S, Lu K Q 1998 Acta Phys. Sin. 47 1509 (in Chinese)[刘劲松、卢克清 1998 47 1509]

    [17]

    ]Liu J S, Lu K Q 1999 J. Opt. Soc. Am. B 16 550

    [18]

    ]Hou C F, Yuan B H, Sun X D, Xu K B 2000 Acta Phys. Sin. 49 1969 (in Chinese)[侯春风、袁保红、孙秀冬、许克彬 2000 49 1969]

    [19]

    ]Fazio E, Renzi F, Rinaldi R, Bertolotti M, Chauvet M, Ramadan W, Petris A, Vlad V I 2004 Appl. Phys. Lett. 85 2193

    [20]

    ]Lu K Q, Yang Y L, Zhao W, Zhang M Z, Yang Y, Zhang L, Liu X M, Zhang Y P 2007 Chin. Phys. 16 3423

    [21]

    ]Liu S X, Liu J S, Cai X, Fan T, Zhang G Y 2008 Chin. Phys. B 17 3771

    [22]

    ]Chauvet M, Coda V, Maillotte H, Fazio E, Salamo G 2005 Opt. Lett. 30 1977

    [23]

    ]Pismennaya K, Kashin O, Matusevich V, Kiessling A, Kowarschik R 2008 J. Opt. Soc. Am. B 25 136

    [24]

    ]Carvalho M I, Singh S R, Christodoulides D N 1995 Opt. Commun. 120 311

    [25]

    ]Carvalho M I, Facao M, Christodoulides D N 2007 Phys. Rev. E 76 016602

    [26]

    ]Yan L F, Wang H C, She W L 2006 Acta Phys. Sin. 55 5257 (in Chinese)[颜利芬、王红成、佘卫龙 2006 55 5257]

    [27]

    ]Yan L F, Wang H C, Zhang B Z, She W L 2007 Acta Phys. 2 Sin. 56 4627 (in Chinese)[颜利芬、王红成、张冰志、佘卫龙 2007 56 4627]

    [28]

    ]Cui H, Zhang B Z, She W L 2008 J. Opt. Soc. Am. B 25 1756

    [29]

    ]Zhang G Y, Liu J S 2006 Opt. Commun. 266 691

  • [1] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用.  , 2023, 72(19): 194703. doi: 10.7498/aps.72.20230863
    [2] 李湘衡, 张冰志, 佘卫龙. 相干光伏空间孤子非对称碰撞研究.  , 2011, 60(7): 074216. doi: 10.7498/aps.60.074216
    [3] 郑亚建, 宣文涛, 陆大全, 欧阳世根, 胡巍, 郭旗. 功率控制的强非局域空间光孤子短程相互作用.  , 2010, 59(2): 1075-1081. doi: 10.7498/aps.59.1075
    [4] 吉选芒, 姜其畅, 刘劲松. 含分压电阻的非相干耦合光折变屏蔽光伏空间孤子对.  , 2010, 59(7): 4701-4706. doi: 10.7498/aps.59.4701
    [5] 杨平保, 曹龙贵, 胡 巍, 朱叶青, 郭 旗, 杨湘波. 向列相液晶中强非局域空间光孤子的相互作用.  , 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [6] 肖发俊, 张 鹏, 刘 圣, 赵建林. 光诱导平面波导阵列中离散空间光孤子的相干相互作用.  , 2008, 57(4): 2529-2536. doi: 10.7498/aps.57.2529
    [7] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用.  , 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [8] 黄春福, 郭 儒, 刘思敏. 多个部分非相干光孤子的相互作用.  , 2007, 56(2): 908-915. doi: 10.7498/aps.56.908
    [9] 颜利芬, 王红成, 张冰志, 佘卫龙. 光伏暗孤子和灰孤子的自偏转.  , 2007, 56(8): 4627-4634. doi: 10.7498/aps.56.4627
    [10] 江德生, 佘卫龙. 光伏孤子对向传播相互作用研究.  , 2007, 56(1): 245-251. doi: 10.7498/aps.56.245
    [11] 颜利芬, 王红成, 佘卫龙. 扩散效应对光伏孤子相互作用的影响.  , 2006, 55(10): 5257-5262. doi: 10.7498/aps.55.5257
    [12] 许超彬, 郭 旗. (1+2)维强非局域空间光孤子的相互作用.  , 2005, 54(11): 5194-5200. doi: 10.7498/aps.54.5194
    [13] 黎扬钢, 王晓生, 佘卫龙, 江德生. 光致异构聚合物材料中暗条纹的Y型分裂研究.  , 2005, 54(12): 5663-5670. doi: 10.7498/aps.54.5663
    [14] 江德生, 佘卫龙. 多个光伏空间亮孤子相互作用研究.  , 2005, 54(5): 2090-2095. doi: 10.7498/aps.54.2090
    [15] 欧阳世根, 王晓生, 佘卫龙. 异色光伏孤子之间的相互作用.  , 2004, 53(3): 767-772. doi: 10.7498/aps.53.767
    [16] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用.  , 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
    [17] 陆 猗, 刘思敏, 郭 儒, 杨立森, 黄春福, 汪大云. 完全非相干白光一维光生伏打暗空间孤子.  , 2003, 52(12): 3075-3081. doi: 10.7498/aps.52.3075
    [18] 王晓生, 欧阳世根, 佘卫龙. 背景光光伏效应对屏蔽-光伏空间孤子的影响.  , 2003, 52(2): 378-382. doi: 10.7498/aps.52.378
    [19] 王晓生, 佘卫龙. 部分空间非相干光光伏空间孤子.  , 2002, 51(3): 573-577. doi: 10.7498/aps.51.573
    [20] 王晓生, 何国岗, 佘卫龙, 江绍基. 复色光光伏空间孤子.  , 2001, 50(3): 496-500. doi: 10.7498/aps.50.496
计量
  • 文章访问数:  8029
  • PDF下载量:  952
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-05
  • 修回日期:  2009-07-07
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map