-
In this paperan improved dissipative particle dynamics(DPD) method was applied to simulate droplet motion in a grooved microchannel. The improved DPD method adopted a recently proposed combination of short-range repulsive and long-range attractive interaction, which can simulate fluid flows with free surfaces, such as droplet motions. The static contact angle between the droplet and the solid wall was simulated with the new potential function, andstatic contactangle~awf/af curve was obtained by Polynomial fit of the 2nd order. The influences ofwall wettability, flow field force, droplet temperature on the flow pattern of droplet in the grooved microchannel were investigated. The results showed that wall wettability and flow field force have large affectson the flow pattern of the droplet, whiledroplet temperature have little affectson it. This article is helpful to understand the fluid flow behavior with free surfaces on rough surfaces.
-
Keywords:
- droplets /
- wall wettability /
- contact angle /
- grooved microchannel
[1] Yun K S, Cho I J, Bu J U, Kim C J, Yoon E 2002 J. Microelectromech.Sys. 11 454
[2] Gordillo J M, Cheng Z D, Ganan-Calvo A M, Marquez M, WeitzD A 2004 Phys. Fluids 16 2828
[3] Lang W P, Yang J L, Chen Y J, Li C 2004 Phys. Chem. of TheNew Century:Frontier and Prospects (Beijing: Science Press) (in Chinese) [梁文平, 杨俊林, 陈拥军, 李灿 2004 新世纪的物理化学: 学科前沿与展望 (北京: 科学出版社)
[4] De Gans B J, Schubert U S 2003 Macromolecular Rapid Communications24 659
[5] Karniadakis G E, Beskok A 2002 Micro Flows: Fundamentals andSimulation (New York: Springer)
[6] Alexander F J, Garcia A L 1997 Comput. Phys. 11 588
[7] Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞, 王崇愚 2007 56 413]
[8] Lim C Y, Shu C, Niu X D, Chew Y T 2002 Phys. Fluids 14 2299
[9] Hoogerbrugge P J, Koelman JMV A 1992 Europhys. Lett. 19 155
[10] Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302
[11] Liu M B, Meakin P, Huang H 2007 J. Computation. Phys. 222110
[12] Liu M B, Chang J Z, Liu H T 2010 The 2nd International Conferenceon Computer and Automation Engineering, Singapore Feb.26–28 2010 p334
[13] Cheng Y T, Rodak D E 2005 Appl. Phys. Lett. 86 144101
[14] Mchale G, Shirtcliffe N J, Aqil S, Perry C C, Newton M I 2004Phys. Rev. Lett. 93 036102
[15] Huang J J, Shu C, Chew Y T, Zheng H W 2007 Int. J. ModernPhys. C 18 492
[16] Huang J, Shu C, Chew Y T 2009 Phys. Fluids 21 022103
[17] Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲纬 2010 59 2595]
[18] Liu M B, Meakin P, Huang H S 2006 Phys. Fluids 18 017101
[19] Espanol P, Serrano M, Zuniga I 1997 Int. J. Modern Phys. C 8899
[20] Espanol P, Warren P 1995 Europhys. Lett. 30 191
[21] Huilgol R R, Phan-Thien N 1997 Fluid Mechanics of Viscoelasticity:General Principles, Constitutive Modeling, Analytical AndNumerical Technique (Amsterdam: Elsevier)
[22] Fan X J, Phan-Thien N, Ng T Y, Wu X H, Xu D 2003 Phys. Fluids15 11
[23] Novik K E, Coveney P V 2000 Phys. Rev. E 61 435
[24] Chen S, Phan-Thien N, Fan X J, Khoo B C 2004 J. Non-NewtonianFluid Mech. 118 65
[25] Liu M B, Liu G R, Lam K Y 2003 J. Computation. Appl. Math.55 263
[26] Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 留谋斌, 刘汉涛 2008 57 3954]
[27] Wang X L, Chen S 2010 Acta Phys. Sin. 59 6778 (in Chinese) [王晓亮, 陈硕 2010 59 6778]
[28] Kong B, Yang X Z 2006 Langmuir 22 2065
[29] Liu J 2008 Thermal Micro-System Technology (Beijing: SciencePress) (in Chinese) [刘静 2008 热学微系统技术 (北京: 科学出版社)]
-
[1] Yun K S, Cho I J, Bu J U, Kim C J, Yoon E 2002 J. Microelectromech.Sys. 11 454
[2] Gordillo J M, Cheng Z D, Ganan-Calvo A M, Marquez M, WeitzD A 2004 Phys. Fluids 16 2828
[3] Lang W P, Yang J L, Chen Y J, Li C 2004 Phys. Chem. of TheNew Century:Frontier and Prospects (Beijing: Science Press) (in Chinese) [梁文平, 杨俊林, 陈拥军, 李灿 2004 新世纪的物理化学: 学科前沿与展望 (北京: 科学出版社)
[4] De Gans B J, Schubert U S 2003 Macromolecular Rapid Communications24 659
[5] Karniadakis G E, Beskok A 2002 Micro Flows: Fundamentals andSimulation (New York: Springer)
[6] Alexander F J, Garcia A L 1997 Comput. Phys. 11 588
[7] Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞, 王崇愚 2007 56 413]
[8] Lim C Y, Shu C, Niu X D, Chew Y T 2002 Phys. Fluids 14 2299
[9] Hoogerbrugge P J, Koelman JMV A 1992 Europhys. Lett. 19 155
[10] Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302
[11] Liu M B, Meakin P, Huang H 2007 J. Computation. Phys. 222110
[12] Liu M B, Chang J Z, Liu H T 2010 The 2nd International Conferenceon Computer and Automation Engineering, Singapore Feb.26–28 2010 p334
[13] Cheng Y T, Rodak D E 2005 Appl. Phys. Lett. 86 144101
[14] Mchale G, Shirtcliffe N J, Aqil S, Perry C C, Newton M I 2004Phys. Rev. Lett. 93 036102
[15] Huang J J, Shu C, Chew Y T, Zheng H W 2007 Int. J. ModernPhys. C 18 492
[16] Huang J, Shu C, Chew Y T 2009 Phys. Fluids 21 022103
[17] Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲纬 2010 59 2595]
[18] Liu M B, Meakin P, Huang H S 2006 Phys. Fluids 18 017101
[19] Espanol P, Serrano M, Zuniga I 1997 Int. J. Modern Phys. C 8899
[20] Espanol P, Warren P 1995 Europhys. Lett. 30 191
[21] Huilgol R R, Phan-Thien N 1997 Fluid Mechanics of Viscoelasticity:General Principles, Constitutive Modeling, Analytical AndNumerical Technique (Amsterdam: Elsevier)
[22] Fan X J, Phan-Thien N, Ng T Y, Wu X H, Xu D 2003 Phys. Fluids15 11
[23] Novik K E, Coveney P V 2000 Phys. Rev. E 61 435
[24] Chen S, Phan-Thien N, Fan X J, Khoo B C 2004 J. Non-NewtonianFluid Mech. 118 65
[25] Liu M B, Liu G R, Lam K Y 2003 J. Computation. Appl. Math.55 263
[26] Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 留谋斌, 刘汉涛 2008 57 3954]
[27] Wang X L, Chen S 2010 Acta Phys. Sin. 59 6778 (in Chinese) [王晓亮, 陈硕 2010 59 6778]
[28] Kong B, Yang X Z 2006 Langmuir 22 2065
[29] Liu J 2008 Thermal Micro-System Technology (Beijing: SciencePress) (in Chinese) [刘静 2008 热学微系统技术 (北京: 科学出版社)]
Catalog
Metrics
- Abstract views: 8463
- PDF Downloads: 928
- Cited By: 0