-
Blends and doping of organic semiconductors are generally employed to improve effectively the charge transfer and dissociation performance. The absorption spectrum may be optimized making use of the different energy states of the components in the blends, which may favor the development of the photovoltaic or solar cell devices. Excellent type-II heterojunction structures can be produced by mixing the small-molecule perylene (EPPTC) and a copolymer of polyfluorene (F8BT). Actually, F8BT and EPPTC exhibit absorptions in the blue region and in the green region, respectively. Thus, the blend will have a much broadened absorption spectrum. In the experiment, the blend solution of these two materials in chloroform is spin-coated onto a piece of glass substrate, so that EPPTC is doped into the polymer of F8BT and the heterojunction structure forms in the final solid film. Then, steady-state absorption and fluorescence spectroscopy, as well as the transient photoluminesence spectroscopy (time-correlated single-photon counting), is used to investigate the formation and the photoluminescence properties of exciplex in the heterojunction film of F8BT doped with EPPTC. The photoluminscence (PL) spectrum and the life-time are measured to characterize the exciplex in the blend film, where the longer life-time of the red-shifted PL spectrum confirms the formation of the exciplex. This provides various experimental data for understanding the formation and the photophysical properties of the heterojunction structures in organic semiconductor blends. Futhermore, the absorption of the blend film covers a large range of the visible spectrum. Therefore, this kind of doping of organic semiconductor is important for the development of photovoltaic and solar cell devices.
-
Keywords:
- organic semiconductor blend film /
- heterojunction /
- charge-transfer state /
- exciplex
[1] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradaley D D C, Dos Santos D A, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121
[2] Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974
[3] Chappell J, Lidzey D G, Jukes P C, Higgins A M, Thompson R L, O0Connor S, Grizzi I, Fletcher R, O’Brien J, Geoghegan M, Jones R A L 2003 Nat. Mater. 2 616
[4] Westenhoff S, Howard I A, Hodgkiss J M, Kirov K R, Bronstein H A, Williams C K, Greenham N C, Friend R H 2008 J. Am. Chem. Soc. 130 13653
[5] Wilkinson F, Helman W P, Ross A B 1995 J. Phys. Chem. Refe. Data 24 663
[6] Morteani A C, Sreearunothai P, Laura, Herz M, Friend R H, Silv C 2004 Phys. Rev. Lett. 92 247402.
[7] Morteani A C, Friend R H, Silva C 2004 Chem. Phys. Lett. 391 81
[8] Huang Y S, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss J M, Deleener C, Friend R H, Beljonne D D 2008 Nat. Mater. 7 483
[9] Morteani A C, Dhoot A S, Kim J-S, Silva C, Greenham N C, Murphy C, Moons E, Cina S, Burroughes J H, Friend R H 2003 Adv. Mater. 15 1708
[10] Peng C Z, Zhang X P, Liu H M, Feng S F 2010 Acta Phys. Sin. 59 5791 (in Chinese) [彭春增,张新平,刘红梅,冯胜飞 2010 59 5791]
[11] Shepherd W E B, Platt A F, Kendrich M J 2011 J. Phys. Chen. Lett. 2 362
[12] Zhang W, Yu J S, Yuan K 2010 Proceedings of SPIE-The International Society for Optical Engineering 7658
[13] Lai S L, ChanMY, Tong Q X 2010 J. Nonlinear Opt. Phys. Mater. 19 603
[14] Park YW, Kim Y M, Choi J H 2011 J. Nanoscience Nanotechnology 11 1381
[15] Zhang X P, Sun B Q 2007 J. Phys. Chem. B 111 10881
[16] Kang J, Kaczmarek O, Liebscher J, Dähne1 L 2010 Int. J. Polym. Sci. 2010 264781
[17] Chaudhuri D, Li D, Che Y, Shafran E, Gerton J M, Zang L, Lupton J M 2011 Nano Lett. 11 488
[18] Provencher F, Laprade J F, C?oté M, Silva C 2009 Phys. Stat. Sol. (c) 6 93
-
[1] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradaley D D C, Dos Santos D A, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121
[2] Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974
[3] Chappell J, Lidzey D G, Jukes P C, Higgins A M, Thompson R L, O0Connor S, Grizzi I, Fletcher R, O’Brien J, Geoghegan M, Jones R A L 2003 Nat. Mater. 2 616
[4] Westenhoff S, Howard I A, Hodgkiss J M, Kirov K R, Bronstein H A, Williams C K, Greenham N C, Friend R H 2008 J. Am. Chem. Soc. 130 13653
[5] Wilkinson F, Helman W P, Ross A B 1995 J. Phys. Chem. Refe. Data 24 663
[6] Morteani A C, Sreearunothai P, Laura, Herz M, Friend R H, Silv C 2004 Phys. Rev. Lett. 92 247402.
[7] Morteani A C, Friend R H, Silva C 2004 Chem. Phys. Lett. 391 81
[8] Huang Y S, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss J M, Deleener C, Friend R H, Beljonne D D 2008 Nat. Mater. 7 483
[9] Morteani A C, Dhoot A S, Kim J-S, Silva C, Greenham N C, Murphy C, Moons E, Cina S, Burroughes J H, Friend R H 2003 Adv. Mater. 15 1708
[10] Peng C Z, Zhang X P, Liu H M, Feng S F 2010 Acta Phys. Sin. 59 5791 (in Chinese) [彭春增,张新平,刘红梅,冯胜飞 2010 59 5791]
[11] Shepherd W E B, Platt A F, Kendrich M J 2011 J. Phys. Chen. Lett. 2 362
[12] Zhang W, Yu J S, Yuan K 2010 Proceedings of SPIE-The International Society for Optical Engineering 7658
[13] Lai S L, ChanMY, Tong Q X 2010 J. Nonlinear Opt. Phys. Mater. 19 603
[14] Park YW, Kim Y M, Choi J H 2011 J. Nanoscience Nanotechnology 11 1381
[15] Zhang X P, Sun B Q 2007 J. Phys. Chem. B 111 10881
[16] Kang J, Kaczmarek O, Liebscher J, Dähne1 L 2010 Int. J. Polym. Sci. 2010 264781
[17] Chaudhuri D, Li D, Che Y, Shafran E, Gerton J M, Zang L, Lupton J M 2011 Nano Lett. 11 488
[18] Provencher F, Laprade J F, C?oté M, Silva C 2009 Phys. Stat. Sol. (c) 6 93
Catalog
Metrics
- Abstract views: 7318
- PDF Downloads: 616
- Cited By: 0