-
The conversion from all-optical non-return-to-zero (NRZ) to return-to-zero (RZ) format is a crucial technology in interfacing WDM and OTDM of future transparent photonic network. The conversion from all-optical single-to-dual NRZ to RZ format conversion is presented and experimentally demonstrated based on four-wave mixing (FWM) in a 50 m dispersion-flattened highly-nonlinear photon crystal fiber (DF-HNL-PCF). The original NRZ format is converted into RZ format by injecting synchronized clock signal into the DF-HNL-PCF. The FWM effect generates two sideband components, which carry the same data information as the original NRZ signal with RZ format. The proposed format converter has a wide and tunable operation wavelength range of 19.3 nm. The optimum conversion efficiency, extinct ratio and Q factor are -21 dB, 11.9 dB and 7.2, respectively. The system is transparent to both bit rate and modulation format. The advantage of this scheme consists in the ability of bandwidth scalable due to the fact that the dispersion flattening of HNL - PCF is used. Furthermore, it is all optical fiber, compact and robust, which makes it more competitive as well as easily accessible for use in practical optical communication systems.
[1] Willner A E, Yilmaz O F, Wang J, Wu X X 2010 IEEE J. Select. Top. Quantum. Electron 16 320
[2] Hayashi M, Tanaka H, Ohara K, Otani T 2002 IEEE J. Lightwave Technol. 20 236
[3] Norte D, Willner A E 1995 IEEE Photon. Technol. Lett. 7 1354
[4] Chou H F, Bowers J E 2007 IEEE J. Select. Top. Quantum Electron. 13 58
[5] Huo L, Dong Y, Lou C Y 2002 Acta Electron. Sin. 30 1305
[6] Lasri J, Devgan P, Grigoryan V S, Kumar P 2004 Conference on Lasers and Electro-Optics 17–21 May, 2004, San Francisco, U.S.A. pp16—21
[7] Lin G, Yu K, Chang 2006 Opt. Lett. 31 1376
[8] Noel L, Shan X, Ellis A D 1995 IEEE Electron. Lett. 31 277
[9] Dong J, Zhang X L, Xu J 2007 Opt. Express 15 2907
[10] Yang X, Mishra A K, Manning R J 2007 IEEE Electron. Lett. 43 469
[11] Reale A, Lugli P, Betti S 2001 IEEE J. Select. Top. Quantum Electron. 7 703
[12] Dong J, Zhang X, Wang F, Yu Y, Huang D 2008 IEEE Electron. Lett. 44 763
[13] Kwok C H, Lin C L 2006 IEEE J. Select. Top. Quantum Electron. 12 451
[14] Kuo B P P, Chui P C 2008 IEEE J. Lightwave Technol. 26 3770
[15] Yu C, Yan L S, Luo L, Wang Y 2005 IEEE Photon. Technol. Lett. 17 636
[16] Wang J, Sun J Q, Sun Q Z 2007 Opt. Lett. 32 2462
[17] Wang D L, Sun J Q, Wang J 2008 Acta Phys. Sin. 57 252 (in Chinese) [汪大林, 孙军强, 王 健 2008 57 252]
[18] Astar W, Driscoll J B, Liu X P, Dadap J I 2010 IEEE J. Select. Top. Quantum Electron. 16 234.
[19] Zhou L J, Chen H 2008 IEEE J. Lightwave Technol. 26 1950
[20] Yan L S, Yi A L, PanW, Luo B, Ye J 2010 Opt. Express 18 21404
[21] Wang Y, Yu C, Luo T, Yan L, Pan Z 2005 J. Lightwave Technol. 23 3331
[22] Petropoulos P, Monro T M, Belardi W 2001 Opt. Lett. 26 1233
[23] Russell P 2003 Science 299 358
[24] Zsigri B, Peucheret C 2006 IEEE Photon. Technol. Lett. 18 2290
[25] Fok M P, Shu C 2007 IEEE Photon. Technol. Lett. 19 1166
[26] Liu X M 2008 Phys. Rev. A 77 043818
[27] Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811
[28] Zhang J Y, Wu J, Feng C F 2007 IEEE Photon. Technol. Lett. 19 33
[29] Bogris A, Syvridis D 2003 IEEE J. Lightwave Technol. 21 1892
-
[1] Willner A E, Yilmaz O F, Wang J, Wu X X 2010 IEEE J. Select. Top. Quantum. Electron 16 320
[2] Hayashi M, Tanaka H, Ohara K, Otani T 2002 IEEE J. Lightwave Technol. 20 236
[3] Norte D, Willner A E 1995 IEEE Photon. Technol. Lett. 7 1354
[4] Chou H F, Bowers J E 2007 IEEE J. Select. Top. Quantum Electron. 13 58
[5] Huo L, Dong Y, Lou C Y 2002 Acta Electron. Sin. 30 1305
[6] Lasri J, Devgan P, Grigoryan V S, Kumar P 2004 Conference on Lasers and Electro-Optics 17–21 May, 2004, San Francisco, U.S.A. pp16—21
[7] Lin G, Yu K, Chang 2006 Opt. Lett. 31 1376
[8] Noel L, Shan X, Ellis A D 1995 IEEE Electron. Lett. 31 277
[9] Dong J, Zhang X L, Xu J 2007 Opt. Express 15 2907
[10] Yang X, Mishra A K, Manning R J 2007 IEEE Electron. Lett. 43 469
[11] Reale A, Lugli P, Betti S 2001 IEEE J. Select. Top. Quantum Electron. 7 703
[12] Dong J, Zhang X, Wang F, Yu Y, Huang D 2008 IEEE Electron. Lett. 44 763
[13] Kwok C H, Lin C L 2006 IEEE J. Select. Top. Quantum Electron. 12 451
[14] Kuo B P P, Chui P C 2008 IEEE J. Lightwave Technol. 26 3770
[15] Yu C, Yan L S, Luo L, Wang Y 2005 IEEE Photon. Technol. Lett. 17 636
[16] Wang J, Sun J Q, Sun Q Z 2007 Opt. Lett. 32 2462
[17] Wang D L, Sun J Q, Wang J 2008 Acta Phys. Sin. 57 252 (in Chinese) [汪大林, 孙军强, 王 健 2008 57 252]
[18] Astar W, Driscoll J B, Liu X P, Dadap J I 2010 IEEE J. Select. Top. Quantum Electron. 16 234.
[19] Zhou L J, Chen H 2008 IEEE J. Lightwave Technol. 26 1950
[20] Yan L S, Yi A L, PanW, Luo B, Ye J 2010 Opt. Express 18 21404
[21] Wang Y, Yu C, Luo T, Yan L, Pan Z 2005 J. Lightwave Technol. 23 3331
[22] Petropoulos P, Monro T M, Belardi W 2001 Opt. Lett. 26 1233
[23] Russell P 2003 Science 299 358
[24] Zsigri B, Peucheret C 2006 IEEE Photon. Technol. Lett. 18 2290
[25] Fok M P, Shu C 2007 IEEE Photon. Technol. Lett. 19 1166
[26] Liu X M 2008 Phys. Rev. A 77 043818
[27] Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811
[28] Zhang J Y, Wu J, Feng C F 2007 IEEE Photon. Technol. Lett. 19 33
[29] Bogris A, Syvridis D 2003 IEEE J. Lightwave Technol. 21 1892
Catalog
Metrics
- Abstract views: 6339
- PDF Downloads: 425
- Cited By: 0