搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含时Schrdinger方程的高阶辛FDTD算法研究

沈晶 沙威 黄志祥 陈明生 吴先良

引用本文:
Citation:

含时Schrdinger方程的高阶辛FDTD算法研究

沈晶, 沙威, 黄志祥, 陈明生, 吴先良

High-oder symplectic FDTD scheme for solving time-dependent Schrdinger equation

Shen Jing, Sha Wei E. I., Huang Zhi-Xiang, Chen Ming-Sheng, Wu Xian-Liang
PDF
导出引用
  • 提出了一种新的算法高阶辛时域有限差分法(SFDTD(3, 4): symplectic finite-difference time-domain)求解含时薛定谔方程.在时间上采用三阶辛积分格式离散, 空间上采用四阶精度的同位差分格式离散, 建立了求解含时薛定谔方程的高阶离散辛框架;探讨了高阶辛算法的稳定性及数值色散性.通过理论上的分析及数值算例表明:当空间采用高阶同位差分格式时, 辛积分可提高算法的稳定度;SFDTD(3, 4)法和FDTD(2, 4)法较传统的FDTD(2, 2)法数值色散性明显改善.对二维量子阱和谐振子的仿真结果表明: SFDTD(3, 4)法较传统的FDTD(2, 2)法及高阶FDTD(2, 4)法有着更好的计算精度和收敛性, 且SFDTD(3, 4)法能够保持量子系统的能量守恒, 适用于长时间仿真.
    Using three-order symplectic integrators and fourth-order collocated spatial differences, a high-order symplectic finite-difference time-domain (SFDTD(3, 4)) scheme is proposed to solve the time-dependent Schrdinger equation. First, high-order symplectic framework for discretizing the Schrdinger equation is described. The numerical stability and dispersion analyses are provided for the FDTD(2, 2), FDTD(2, 4) and SFDTD(3, 4) schemes. The results are demonstrated in terms of theoretical analyses and numerical simulations. The spatial high-order collocated difference reduces the stability that can be improved by the high-order symplectic integrators. The SFDTD(3, 4) scheme and FDTD(2, 4) approach show better numerical dispersion than the traditional FDTD(2, 2) method. The simulation results of a two-dimensional quantum well and harmonic oscillator strongly confirm the advantages of the SFDTD(3, 4) scheme over the traditional FDTD(2, 2) method and other high-order approaches. The explicit SFDTD(3, 4) scheme, which is high-order-accurate and energy-conserving, is well suited for long-term simulation.
    • 基金项目: 国家自然科学 (批准号: 60931002, 61101064, 61001033)、 安徽省高校自然科学研究重点项目(批准号: KJ2011A242, KJ2011A002)、 安徽省杰出青年基金(批准号: 1108085J01)、 安徽省优秀青年人才基金一般项目(批准号: 2011SQRL130)和安徽省自然科学青年基金(批准号: 10040606Q51)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60931002, 61101064, 61001033), the Provincial Natural Science Research Project of Anhui Colleges (Grant Nos. KJ2011A242, KJ2011A002), the Excellent Youth Foundation of Anhui Province(Grant No. 1108085J01), the Excellent Youth Foundation of Anhui (Grant No.2011SQRL130), and the Natural Science Foundation of Anhui (Grant No. 10040606Q51).
    [1]

    Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press)

    [2]

    Griffiths D J 2004 Introduction to Quantum Mechanics (Second Edition Addison-Wesley) (Boston)

    [3]

    Joe Y S, Satanin A M, Kim C S 2006 Phys. Scr. 74 259

    [4]

    Soriano A, Navarro E A, Porti J A, Such V 2004 J. Appl. Phys. 95 8011

    [5]

    Sullivan D M, Citrin D S 2005 J. Appl. Phys. p97

    [6]

    Sanz-Serna J M, Calvo M P 1994 Numerical Hamiltonian Problems (London: Chapman & Hall)

    [7]

    Wen G Y 1999 Journal of Microwave 15(1) 68 (in Chinese) [文舸一 1999 微波学报 15(1) 68]

    [8]

    Feng K 2003 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science and Technology Publishing House) p358-359 (in Chinese) [冯康 2003 哈密尔顿系统的辛几何算法(杭州:浙江科学技术出版社) 第358—359页]

    [9]

    Gray S K, Manolopoulos D E 1996 J. Chem. Phys. 104 7099

    [10]

    Liu X Y, Ding P Z, Hong J L, Wang L J 2005 Comput. Math. Appl. 50 637

    [11]

    Blanes S, Casas F, Murua A 2006 J. Chem. Phys. p124

    [12]

    Chin S A, Chen C R 2002 J. Chem. Phys. 117 1409

    [13]

    Liu X S, Liu X Y, Zhou Z Y, Ding P Z, Pan S F 2000 Int. J. Quantum. Chem. 79 343

    [14]

    Monovasilis T, Kalogiratou Z, Simos T E 2008 Phys. Lett. A 372 569

    [15]

    Islas A L, Karpeev D A, Schober C M 2001 J. Comput. Phys. 173 116

    [16]

    Wang T C, Nie T, Zhang L M 2009 J. Comput. Appl. Math. 231 745

    [17]

    Sullivan D M 2000 Electromagnetic Simulation Using the FDTD Method (New York: IEEE Press)

    [18]

    Taflove A, Hagness S C 2005 Computational Electrodynamics: the Finite-Difference Time-Domain Method (3rd Ed.) (Boston: Artech House)

    [19]

    Yoshida H 1990 Phys. Lett. A 150 262

    [20]

    Sha W, Huang Z X, Chen M S, Wu X L 2008 IEEE Trans. Antennas Propag. 56 493

  • [1]

    Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press)

    [2]

    Griffiths D J 2004 Introduction to Quantum Mechanics (Second Edition Addison-Wesley) (Boston)

    [3]

    Joe Y S, Satanin A M, Kim C S 2006 Phys. Scr. 74 259

    [4]

    Soriano A, Navarro E A, Porti J A, Such V 2004 J. Appl. Phys. 95 8011

    [5]

    Sullivan D M, Citrin D S 2005 J. Appl. Phys. p97

    [6]

    Sanz-Serna J M, Calvo M P 1994 Numerical Hamiltonian Problems (London: Chapman & Hall)

    [7]

    Wen G Y 1999 Journal of Microwave 15(1) 68 (in Chinese) [文舸一 1999 微波学报 15(1) 68]

    [8]

    Feng K 2003 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science and Technology Publishing House) p358-359 (in Chinese) [冯康 2003 哈密尔顿系统的辛几何算法(杭州:浙江科学技术出版社) 第358—359页]

    [9]

    Gray S K, Manolopoulos D E 1996 J. Chem. Phys. 104 7099

    [10]

    Liu X Y, Ding P Z, Hong J L, Wang L J 2005 Comput. Math. Appl. 50 637

    [11]

    Blanes S, Casas F, Murua A 2006 J. Chem. Phys. p124

    [12]

    Chin S A, Chen C R 2002 J. Chem. Phys. 117 1409

    [13]

    Liu X S, Liu X Y, Zhou Z Y, Ding P Z, Pan S F 2000 Int. J. Quantum. Chem. 79 343

    [14]

    Monovasilis T, Kalogiratou Z, Simos T E 2008 Phys. Lett. A 372 569

    [15]

    Islas A L, Karpeev D A, Schober C M 2001 J. Comput. Phys. 173 116

    [16]

    Wang T C, Nie T, Zhang L M 2009 J. Comput. Appl. Math. 231 745

    [17]

    Sullivan D M 2000 Electromagnetic Simulation Using the FDTD Method (New York: IEEE Press)

    [18]

    Taflove A, Hagness S C 2005 Computational Electrodynamics: the Finite-Difference Time-Domain Method (3rd Ed.) (Boston: Artech House)

    [19]

    Yoshida H 1990 Phys. Lett. A 150 262

    [20]

    Sha W, Huang Z X, Chen M S, Wu X L 2008 IEEE Trans. Antennas Propag. 56 493

  • [1] 谢国大, 潘攀, 任信钢, 冯乃星, 方明, 李迎松, 黄志祥. 高阶SF-SFDTD方法在含时薛定谔方程求解中的应用研究.  , 2024, 73(3): 030201. doi: 10.7498/aps.73.20230771
    [2] 公睿智, 王灯山. 散焦型非线性薛定谔方程的Whitham调制理论及其间断初值问题解的分类和演化.  , 2023, 72(10): 100503. doi: 10.7498/aps.72.20230172
    [3] 饶继光, 陈生安, 吴昭君, 贺劲松. 空间位移$\mathcal{PT}$对称非局域非线性薛定谔方程的高阶怪波解.  , 2023, 72(10): 104204. doi: 10.7498/aps.72.20222298
    [4] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制.  , 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [5] 唐富明, 刘凯, 杨溢, 屠倩, 王凤, 王哲, 廖青. 基于图形处理器加速数值求解三维含时薛定谔方程.  , 2020, 69(23): 234202. doi: 10.7498/aps.69.20200700
    [6] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法.  , 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [7] 李金艳, 聂在平, 赵延文. 时域磁场积分方程时间步进算法稳定性研究.  , 2013, 62(9): 090206. doi: 10.7498/aps.62.090206
    [8] 钟双英, 伍歆. 半隐Euler法和隐中点法嵌入混合辛积分器的比较.  , 2011, 60(9): 090402. doi: 10.7498/aps.60.090402
    [9] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究.  , 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [10] 刘晓静, 张佰军, 李海波, 刘兵, 张春丽, 郭义庆, 张丙新. 应用量子理论方法研究中子双缝衍射.  , 2010, 59(6): 4117-4122. doi: 10.7498/aps.59.4117
    [11] 胡先权, 崔立鹏, 罗光, 马燕. 幂函数叠加势的径向薛定谔方程的解析解.  , 2009, 58(4): 2168-2173. doi: 10.7498/aps.58.2168
    [12] 刘 奎, 丁宏林, 张贤高, 余林蔚, 黄信凡, 陈坤基. 量子点浮置栅量子线沟道三栅结构单电子场效应管存储特性的数值模拟.  , 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [13] 厉江帆, 单树民, 杨建坤, 姜宗福. 失谐量子频率转换系统薛定谔方程的显式解析解.  , 2007, 56(10): 5597-5601. doi: 10.7498/aps.56.5597
    [14] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程.  , 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [15] 辛国锋, 陈国鹰, 花吉珍, 赵润, 康志龙, 冯荣珠, 安振峰. 941nm大功率应变单量子阱激光器的波长设计.  , 2004, 53(5): 1293-1298. doi: 10.7498/aps.53.1293
    [16] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索.  , 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [17] 李培咸, 郝 跃, 范 隆, 张进城, 张金凤, 张晓菊. 基于量子微扰的AlGaN/GaN异质结波函数半解析求解.  , 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
    [18] 阮航宇, 陈一新. (2+1)维非线性薛定谔方程的环孤子,dromion,呼吸子和瞬子.  , 2001, 50(4): 586-592. doi: 10.7498/aps.50.586
    [19] 刘剑波, 蔡喜平. 一维定态薛定谔方程的宏观模拟解法.  , 2001, 50(5): 820-824. doi: 10.7498/aps.50.820
    [20] 李学信, 徐至展, 汤燕. 一维含时薛定谔方程的数值求解及其在强场高次谐波中的应用.  , 1997, 46(2): 267-271. doi: 10.7498/aps.46.267
计量
  • 文章访问数:  7838
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-06
  • 修回日期:  2012-04-10

/

返回文章
返回
Baidu
map