-
表面织构是一种有效降低表面反射率、提高硅基太阳能电池效率的方法. 采用等离子体浸没离子注入的方法制备了黑硅抗反射层.分别通过原子力显微镜和紫外-可见-近红外分光光度计对黑硅样品表面形貌和反射率进行分析, 结果发现黑硅样品表面布满了高度为0550 nm的山峰状结构, 结构层中硅体积分数和折射率随抗反射层厚度增加而连续降低. 在3001000 nm波段范围内,黑硅样品的加权平均反射率低至6.0%. 通过传递矩阵方法对黑硅样品反射谱进行模拟,得到的反射谱与实测反射谱非常符合.
-
关键词:
- 等离子体浸没离子注入 /
- 折射率 /
- 抗反射层 /
- 黑硅
Surface texturing is an effective method to reduce surface reflectance and improve the efficiency of silicon solar cell. In this paper, the black silicon antireflection coating is fabricated by using plasma immersion ion implantation. The surface morphology and reflectance are investigated by atomic force microscope and UV-VIS-NIR spectrophotometer, respectively. Results show that mountain-like structure with a depth of 0550 nm is fabricated on black silicon surface. Both the fractional area occupied by silicon and refractive index decrease smoothly with the increase of depth across the antireflection coating. The weighted average reflectance of black silicon is as low as 6.0% in a wavelength range of 3001000 nm. The depression mechanism of the optical reflectance is analyzed by simulating the structure with the transfer matrix method, and the simulation result fits the measured spectrum well.-
Keywords:
- plasma immersion ion implantation /
- refractive index /
- antireflection coating /
- black silicon
[1] Ma L L, Zhou Y C, Jiang N, Lu X, Shao J, Lu W, Ge J, Ding X M, Hou X Y 2006 Appl. Phys. Lett. 88 171907
[2] Parm I O, Kim K, Lim D G, Lee J H, Heo J H, Kim J, Kim D S, Lee S H, Yi J 2002 Sol. Energy Mater. Sol. Cells 74 97
[3] Zhou C L, Wang W J, Zhao L, Li H L, Diao H W, Cao X N 2010 Acta Phys. Sin. 59 5777 (in Chinese) [周春兰, 王文静, 赵磊, 李海玲, 刁宏伟, 曹晓宁 2010 59 5777]
[4] Cheng Y T, Ho J J, Tsai S Y, Ye Z Z, Lee W, Hwang D S, Chang S H, Chang C C, Wang K L 2011 Sol. Energy 85 87
[5] Her T H, Finlay R J, Wu C, Deliwala S 1998 Appl. Phys. Lett. 73 1673
[6] Fang J, Chen C S, Wang F, Liu S H 2011 Chin. Phys. B 20 074202
[7] Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese) [刘光友, 谭兴文, 姚金才, 王振, 熊祖洪 2008 57 514]
[8] Yoo J, Yu G, Yi J 2011 Sol. Energy Mater. Sol. Cells 95 2
[9] Xia Y, Liu B W, Liu J, Shen Z N, Li C B 2011 Sol. Energy 85 1574
[10] Chattopadhyay S, Huang Y F, Jen Y J, Ganguly A, Chen K H, Chen L C 2010 Mater. Sci. Eng. R 69 1
[11] Maxwell Garnett J C 1904 Philos. Trans. R. Soc. London 203 385
[12] Liu Y S, Yang W H, Zhu Y Y, Chen J, Yang Z L, Yang J H 2009 Acta Phys. Sin. 58 4992 (in Chinese) [刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕 2009 58 4992]
-
[1] Ma L L, Zhou Y C, Jiang N, Lu X, Shao J, Lu W, Ge J, Ding X M, Hou X Y 2006 Appl. Phys. Lett. 88 171907
[2] Parm I O, Kim K, Lim D G, Lee J H, Heo J H, Kim J, Kim D S, Lee S H, Yi J 2002 Sol. Energy Mater. Sol. Cells 74 97
[3] Zhou C L, Wang W J, Zhao L, Li H L, Diao H W, Cao X N 2010 Acta Phys. Sin. 59 5777 (in Chinese) [周春兰, 王文静, 赵磊, 李海玲, 刁宏伟, 曹晓宁 2010 59 5777]
[4] Cheng Y T, Ho J J, Tsai S Y, Ye Z Z, Lee W, Hwang D S, Chang S H, Chang C C, Wang K L 2011 Sol. Energy 85 87
[5] Her T H, Finlay R J, Wu C, Deliwala S 1998 Appl. Phys. Lett. 73 1673
[6] Fang J, Chen C S, Wang F, Liu S H 2011 Chin. Phys. B 20 074202
[7] Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese) [刘光友, 谭兴文, 姚金才, 王振, 熊祖洪 2008 57 514]
[8] Yoo J, Yu G, Yi J 2011 Sol. Energy Mater. Sol. Cells 95 2
[9] Xia Y, Liu B W, Liu J, Shen Z N, Li C B 2011 Sol. Energy 85 1574
[10] Chattopadhyay S, Huang Y F, Jen Y J, Ganguly A, Chen K H, Chen L C 2010 Mater. Sci. Eng. R 69 1
[11] Maxwell Garnett J C 1904 Philos. Trans. R. Soc. London 203 385
[12] Liu Y S, Yang W H, Zhu Y Y, Chen J, Yang Z L, Yang J H 2009 Acta Phys. Sin. 58 4992 (in Chinese) [刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕 2009 58 4992]
计量
- 文章访问数: 7941
- PDF下载量: 822
- 被引次数: 0