-
污水处理、油田采油、液态金属冷却反应堆和磁流体动力转换器等领域采用气力提升系统有其显著优势. 由于不同液体介质与气体介质密度对气力提升系统性能影响较大, 因此本文基于Fluent仿真软件, 采用欧拉模型、k-ω剪切应力输运湍流模型数值模拟了氮气-水、氮气-煤油、氮气-水银及空气-水、氩气-水、氮气-水下气力提升系统内气液两相流动行为, 分析了系统稳定时提升立管内气相体积分数、提升液体流量、提升效率、提升管出口处液体径向速度的变化规律. 研究结果表明: 1)氮气-水、氮气-煤油、氮气-水银系统中, 提升管内液体介质密度越大, 提升管内气相体积分数越小、提升液体流量越大、提升效率越高; 2)空气-水、氩气-水、氮气-水系统中, 提升管内气体介质密度越大, 提升管内气相体积分数越小、提升液体流量越大、提升效率峰值越小; 3)提升管出口处提升液体径向速度随气体充入量的不断增加而整体波动升高, 最终管轴中心附近液体速度较大, 管壁附近液体速度较小. 本文研究成果为污水处理、气举采油、液态重金属冷却核反应堆和磁流体动力转换器等应用领域的气力提升技术的优化提供科学的理论基础.The gas-lift system has a lot of significant advantages in sewage treatment, deep well oil recovery, liquid metal cooled reactor and magnetohydrodynamic power converters. The densities of different liquid media and gas media have great influences on the performance of gas lift system. Therefore, based on Fluent simulation software, using Euler model and k-ω SST (shear stress transport) turbulence model, the gas-liquid two-phase flow behaviors in nitrogen-water, nitrogen-kerosene, nitrogen-mercury and air-water, argon-water, nitrogen-water of gas lift system are studied. The rules of gas volume fraction and liquid flow rate at lifting pipe, liquid radial velocity at lifting pipe outlet, promoting efficiency are analyzed. The results are shown as follows. 1) In the nitrogen-water, nitrogen-kerosene and nitrogen-mercury system, the higher the density of liquid medium, the smaller the gas volume fraction in the lifting pipe is; the greater the flow rate of lifting liquid, the higher the promoting efficiency is. 2) In the air-water, argon-water and nitrogen-water systems, the higher the density of gas medium, the smaller the gas volume fraction in the lifting pipe is; the larger the flow rate of lifting liquid, the smaller the peak value of promoting efficiency is. 3) With the increase of gas flow rate, the liquid radial velocity at the lifting pipe outlet increases with overall fluctuation rising. Finally, the liquid velocity near the center of pipe axis is large, near the pipe wall is small. These research results provide the scientific theoretical basis for optimizing the gas lifting technology in applications such as sewage treatment, deep well oil recovery, liquid metal cooled reactor and magnetohydrodynamic power converters.
-
Keywords:
- gas lift system /
- numerical simulation /
- density /
- lifting efficiency
[1] Tang C L, Hu D, Pei J H, Yang L 2010 Chin. J. Mech. Eng. 23 122Google Scholar
[2] Cazarez O, Montoya D, Vital A G, Bannwart A C 2010 Int. J. Multiphase Flow 36 439Google Scholar
[3] 胡东, 赵哲睿, 唐川林, 张凤华 2013 矿冶工程 33 9Google Scholar
Hu D, Zhao Z R, Tang C L, Zhang F H 2013 Min. Metal. Eng. 33 9Google Scholar
[4] 何晓娟 2013 硕士学位论文 (广州: 华南理工大学)
Gu X J 2013 M. S. Thesis (Guangzhou: South China University of Technology) (in Chinese)
[5] 廖振方, 陈德淑, 邓晓刚, 李军, 杨昌林, 王红霞, 赵建新 2003 重庆大学学报 26 1Google Scholar
Liao Z F, Chen D S, Deng X G, Li J, Yang C L, Wang H X, Zhao J X 2003 J. Chongqing Univ. 26 1Google Scholar
[6] Liang N K, Peng H K 2005 Ocean Eng. 32 731Google Scholar
[7] 刘三威 2004 博士学位论文 (成都: 西南石油学院)
Liu S W 2004 Ph. D. Dissertation (Chengdu: Southwest Petroleum University) (in Chinese)
[8] Giuliani C M, Camponogara E 2015 Comput. Chem. Eng. 75 60Google Scholar
[9] Ma W, Bubelis E, Karbojian A, Sehgal B R, Coddington P 2006 Nucl. Eng. Des. 236 1422Google Scholar
[10] Satyamurthy P, Dixit N S, Thiyagarajan T K, Venkatramani N, Quraishi A M, Mushtaq A 1998 Int. J. Multiphase Flow 24 721Google Scholar
[11] Nicklin D J 1963 Trans. Instn. Chem. Engrs 41 29
[12] Futer R E 1965 US Patent 3 180 688
[13] Kato H, Miyazawa T, Timaya S, Iwasaki T 1975 Bull. JSME 18 286Google Scholar
[14] Kouremenos D A, Staicos J 1985 Int. J. Heat Fluid Flow 6 217Google Scholar
[15] Kajishima T, Saito T 1996 JSME Int. J., Ser. B 39 525Google Scholar
[16] Khalil M F, Elshorbagy K A, Kassab S Z, Fahmy R I 1999 Int. J. Heat Fluid Flow 20 598Google Scholar
[17] Furukawa T, Fukano T 2001 Int. J. Multiphase Flow 27 1109Google Scholar
[18] Pougatch K, Salcudean M 2007 American Society of Mechanical Engineers San Diego, California, USA, June 10−15, 2007 p685
[19] Moisidis C T, Kastrinakis E G 2010 J. Hydraul. Res. 48 680Google Scholar
[20] 高嵩, 李巍, 尤云祥, 胡天群 2012 61 104701Google Scholar
Gao S, Li W, You Y X, Hu T Q 2012 Acta Phys. Sin. 61 104701Google Scholar
[21] 李洪伟, 周云龙, 王世勇, 孙斌 2013 62 140505Google Scholar
Li H W, Zhou Y L, Wang S Y, Sun B 2013 Acta Phys. Sin. 62 140505Google Scholar
[22] 胡东, 唐川林, 张凤华, 杨林 2012 水动力学研究与进展A辑 27 456Google Scholar
Hu D, Tang C L, Zhang F H, Yang L 2012 Chinese J. Hydrodyn. 27 456Google Scholar
[23] Tighzert H, Brahimi M, Kechroud N, Benabbas F 2013 J. Pet. Sci. Eng. 110 155Google Scholar
[24] Fan W, Chen J, Pan Y, Huang H, Chen C T A., Chen Y 2013 Ocean Eng. 59 47Google Scholar
[25] Wahba E M, Gadalla M A, Abueidda D, Dalaq A, Hafiz H, Elawadi K, Issa R 2014 J. Fluids Eng. 136 111301Google Scholar
[26] Zuo J, Tian W, Chen R, Qiu S, Su G 2013 Nucl. Eng. Des. 263 1Google Scholar
[27] Zuo J, Tian W, Qiu S, Su G 2018 Prog. Nucl. Energy 106 181Google Scholar
[28] 左娟莉, 李逢超, 郭鹏程, 孙帅辉, 罗兴锜 2017 农业工程学报 33 85Google Scholar
Zuo J L, Li P C, Guo P C, Sun S H, Luo X Q 2017 Trans. Chin. Soc. Agricultural Eng. 33 85Google Scholar
[29] 江帆, 徐勇程, 黄鹏 Fluent高级应用与实例分析 (第2版) (北京: 清华出版社) 第158− 162页
Jiang F, Xu Y C, Huang P 2018 Advanced Application and Case Study of Fluent (2nd Ed.) (Beijing: Tsinghua University Press) pp158−162 (in Chinese)
[30] 刘博 2016 硕士学位论文 (西安: 西安交通大学)
Liu B 2016 M. S. Thesis (Xi’an: Xi’an Jiaotong University) (in Chinese)
[31] Krepper E, Morel C, Niceno B, Ruyer P 2011 Multiphase Sci. Technol. 23 129Google Scholar
[32] Oueslati A, Megriche A 2017 Energy Procedia 119 693Google Scholar
-
表 1 实验结果与模拟结果的对比
Table 1. Comparison of experimental and simulation results.
充气量QG/m3·h–1 提升液体流量
实验值$ Q′_{\rm L} $/m3·h–1提升液体流量
模拟值QL/m3·h–1误差/% 0.8163 0.4031 0.4597 14.0 1.6327 0.5700 0.8117 42.4 2.4490 1.2336 1.1817 4.2 3.2653 1.3676 1.3665 0.1 4.0816 1.3709 1.3786 0.6 4.8980 1.3735 1.3848 0.8 5.7143 1.3735 1.3705 0.2 表 2 物性参数表
Table 2. Physical parameters table.
变量 密度/kg·m–3 黏度/Pa·s 表面张力/N·m–1 氮气 1.1380 0.00001663 空气 1.2250 0.000017894 氩气 1.6228 0.000021250 水银 13529 0.001523 0.4840 水 998.2 0.001003 0.0728 煤油 780 0.0024 0.0260 -
[1] Tang C L, Hu D, Pei J H, Yang L 2010 Chin. J. Mech. Eng. 23 122Google Scholar
[2] Cazarez O, Montoya D, Vital A G, Bannwart A C 2010 Int. J. Multiphase Flow 36 439Google Scholar
[3] 胡东, 赵哲睿, 唐川林, 张凤华 2013 矿冶工程 33 9Google Scholar
Hu D, Zhao Z R, Tang C L, Zhang F H 2013 Min. Metal. Eng. 33 9Google Scholar
[4] 何晓娟 2013 硕士学位论文 (广州: 华南理工大学)
Gu X J 2013 M. S. Thesis (Guangzhou: South China University of Technology) (in Chinese)
[5] 廖振方, 陈德淑, 邓晓刚, 李军, 杨昌林, 王红霞, 赵建新 2003 重庆大学学报 26 1Google Scholar
Liao Z F, Chen D S, Deng X G, Li J, Yang C L, Wang H X, Zhao J X 2003 J. Chongqing Univ. 26 1Google Scholar
[6] Liang N K, Peng H K 2005 Ocean Eng. 32 731Google Scholar
[7] 刘三威 2004 博士学位论文 (成都: 西南石油学院)
Liu S W 2004 Ph. D. Dissertation (Chengdu: Southwest Petroleum University) (in Chinese)
[8] Giuliani C M, Camponogara E 2015 Comput. Chem. Eng. 75 60Google Scholar
[9] Ma W, Bubelis E, Karbojian A, Sehgal B R, Coddington P 2006 Nucl. Eng. Des. 236 1422Google Scholar
[10] Satyamurthy P, Dixit N S, Thiyagarajan T K, Venkatramani N, Quraishi A M, Mushtaq A 1998 Int. J. Multiphase Flow 24 721Google Scholar
[11] Nicklin D J 1963 Trans. Instn. Chem. Engrs 41 29
[12] Futer R E 1965 US Patent 3 180 688
[13] Kato H, Miyazawa T, Timaya S, Iwasaki T 1975 Bull. JSME 18 286Google Scholar
[14] Kouremenos D A, Staicos J 1985 Int. J. Heat Fluid Flow 6 217Google Scholar
[15] Kajishima T, Saito T 1996 JSME Int. J., Ser. B 39 525Google Scholar
[16] Khalil M F, Elshorbagy K A, Kassab S Z, Fahmy R I 1999 Int. J. Heat Fluid Flow 20 598Google Scholar
[17] Furukawa T, Fukano T 2001 Int. J. Multiphase Flow 27 1109Google Scholar
[18] Pougatch K, Salcudean M 2007 American Society of Mechanical Engineers San Diego, California, USA, June 10−15, 2007 p685
[19] Moisidis C T, Kastrinakis E G 2010 J. Hydraul. Res. 48 680Google Scholar
[20] 高嵩, 李巍, 尤云祥, 胡天群 2012 61 104701Google Scholar
Gao S, Li W, You Y X, Hu T Q 2012 Acta Phys. Sin. 61 104701Google Scholar
[21] 李洪伟, 周云龙, 王世勇, 孙斌 2013 62 140505Google Scholar
Li H W, Zhou Y L, Wang S Y, Sun B 2013 Acta Phys. Sin. 62 140505Google Scholar
[22] 胡东, 唐川林, 张凤华, 杨林 2012 水动力学研究与进展A辑 27 456Google Scholar
Hu D, Tang C L, Zhang F H, Yang L 2012 Chinese J. Hydrodyn. 27 456Google Scholar
[23] Tighzert H, Brahimi M, Kechroud N, Benabbas F 2013 J. Pet. Sci. Eng. 110 155Google Scholar
[24] Fan W, Chen J, Pan Y, Huang H, Chen C T A., Chen Y 2013 Ocean Eng. 59 47Google Scholar
[25] Wahba E M, Gadalla M A, Abueidda D, Dalaq A, Hafiz H, Elawadi K, Issa R 2014 J. Fluids Eng. 136 111301Google Scholar
[26] Zuo J, Tian W, Chen R, Qiu S, Su G 2013 Nucl. Eng. Des. 263 1Google Scholar
[27] Zuo J, Tian W, Qiu S, Su G 2018 Prog. Nucl. Energy 106 181Google Scholar
[28] 左娟莉, 李逢超, 郭鹏程, 孙帅辉, 罗兴锜 2017 农业工程学报 33 85Google Scholar
Zuo J L, Li P C, Guo P C, Sun S H, Luo X Q 2017 Trans. Chin. Soc. Agricultural Eng. 33 85Google Scholar
[29] 江帆, 徐勇程, 黄鹏 Fluent高级应用与实例分析 (第2版) (北京: 清华出版社) 第158− 162页
Jiang F, Xu Y C, Huang P 2018 Advanced Application and Case Study of Fluent (2nd Ed.) (Beijing: Tsinghua University Press) pp158−162 (in Chinese)
[30] 刘博 2016 硕士学位论文 (西安: 西安交通大学)
Liu B 2016 M. S. Thesis (Xi’an: Xi’an Jiaotong University) (in Chinese)
[31] Krepper E, Morel C, Niceno B, Ruyer P 2011 Multiphase Sci. Technol. 23 129Google Scholar
[32] Oueslati A, Megriche A 2017 Energy Procedia 119 693Google Scholar
计量
- 文章访问数: 8865
- PDF下载量: 109
- 被引次数: 0