-
Due to a purely repulsive conservative interaction adopted in the traditional dissipative particle dynamics, the vapor-liquid coexistence phenomena or fluid flows with free surfaces could not be simulated. In the present study a recently proposed combination of short-range repulsive and long-range attractive interaction for DPD was investigated to explore its ability of simulating vapor-liquid coexistence or fluid flows with free surfaces. With this modified interaction, steady vapor-liquid interface could be obtained in DPD simulation, and the stress distribution across the vapor-liquid interface region was also discussed, which were found in accordance with those obtained by multibody DPD. Furthermore, surface tension of vapor-liquid interface was studied, and it was verified that Laplace’s law is satisfied in our simulation. Surface tensions obtained by theoretical method and Laplace’s law, respectively, are in agreement with each other.
-
Keywords:
- dissipative particle dynamics /
- vapor-liquid coexistence /
- drop /
- surface tension
[1] Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302
[2] Liu M B, Meakin P, Huang H 2006 Phys. Fluids 18 017101
[3] Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚、王光谦 2008 57 4667]
[4] Sun D K, Zhu M F, Yang Z R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285(in Chinese)[孙东科、朱鸣芳、杨朝蓉、潘诗琰、戴 挺 2009 58 S285]
[5] Hoogerbrugge P J, Koelman J M V A 1992 Europhys. Lett. 19 155
[6] Marsh C A 1998 Ph. D. Dissertation (Oxford: University of Oxford)
[7] Groot R D, Warren P B 1997 Phys. Rev. Lett. 107 4423
[8] Pagonabarraga I, Frenkel D 2001 J. Chem. Phys. 115 5015
[9] Pagonabarraga I, Frenkel D 2000 Mol. Simul. 25 167
[10] Warren P B 2001 Phys. Rev. Lett. 87 225702
[11] Warren P B 2003 Phys. Rev.E 68 066702
[12] Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠、刘谋斌、刘汉涛 2008 57 3954]
[13] Liu M B, Meakin P, Huang H 2007 Water Resour. Res. 43 W04411
[14] Tiwari A, Abraham J 2006 Phys. Rev. E 74 056701
[15] Novik K E, Coveney P V 2000 Phys. Rev. E 59 6342
[16] Chen S, Phan-Thien N, Fan X J 2004 J. Non-Newton. Fluid Mech. 118 65
[17] Liu M B, Liu G R, Lam K Y 2003 J. Comput. Appl. Math. 155 263
[18] Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817
-
[1] Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302
[2] Liu M B, Meakin P, Huang H 2006 Phys. Fluids 18 017101
[3] Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚、王光谦 2008 57 4667]
[4] Sun D K, Zhu M F, Yang Z R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285(in Chinese)[孙东科、朱鸣芳、杨朝蓉、潘诗琰、戴 挺 2009 58 S285]
[5] Hoogerbrugge P J, Koelman J M V A 1992 Europhys. Lett. 19 155
[6] Marsh C A 1998 Ph. D. Dissertation (Oxford: University of Oxford)
[7] Groot R D, Warren P B 1997 Phys. Rev. Lett. 107 4423
[8] Pagonabarraga I, Frenkel D 2001 J. Chem. Phys. 115 5015
[9] Pagonabarraga I, Frenkel D 2000 Mol. Simul. 25 167
[10] Warren P B 2001 Phys. Rev. Lett. 87 225702
[11] Warren P B 2003 Phys. Rev.E 68 066702
[12] Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠、刘谋斌、刘汉涛 2008 57 3954]
[13] Liu M B, Meakin P, Huang H 2007 Water Resour. Res. 43 W04411
[14] Tiwari A, Abraham J 2006 Phys. Rev. E 74 056701
[15] Novik K E, Coveney P V 2000 Phys. Rev. E 59 6342
[16] Chen S, Phan-Thien N, Fan X J 2004 J. Non-Newton. Fluid Mech. 118 65
[17] Liu M B, Liu G R, Lam K Y 2003 J. Comput. Appl. Math. 155 263
[18] Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817
Catalog
Metrics
- Abstract views: 10751
- PDF Downloads: 1108
- Cited By: 0