Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nucleation and coagulation of nanoparticles in a planar jet

Liu Yan-Hua Gan Fu-Jun Zhang Kai

Citation:

Nucleation and coagulation of nanoparticles in a planar jet

Liu Yan-Hua, Gan Fu-Jun, Zhang Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The nucleation and coagulation of nanoparticles in the binary system of water vapor (relative humidity 70%) and sulfuric acid vapor (5×10-6) were detailedly studied by performing numerical simulation in a planar jet (Re=8300). The large eddy simulation was utilized to calculate the flow field, and the particle field is obtained by using the direct quadrature method of moment to solve the particle general dynamic equation. The distributions of particle number concentration, volume concentration and average diameter were discussed. The result shows that the growth of the calculated momentum thickness is consistent with the previous experimental data. The interface of the jet will roll up and generate the coherent vortices which will lead to an obvious decrease of the specie concentration of sulfuric acid vapor and increase of number concentration of nanoparticles in the vortex core. The appearance of the coherent vortices increases the possibility of particle collision and enhances the particle coagulation. The nanoparticle nucleation is enhanced in the vortex core where high particle number concentration will accelerate the particle coagulation.
    [1]

    [1]Penttinen P, Timonen K L, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen L 2001 Environ. Health Perspect. 109 319

    [2]

    [2]Meng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009  (in Chinese) [孟利军、张凯旺、钟建新 2007 56 1009]

    [3]

    [3]Li J, Liu W L, Meng L J, Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese)[李俊、刘文亮、孟利军、张凯旺、钟建新 2008   57 382]

    [4]

    [4]Friedlander S K 2000 Smoke, Dust, and Haze : Fundamentals of Aerosol Dynamics (Oxford: Oxford University Press )

    [5]

    [5]Talukdar S S, Swihart M T 2004 J. Aerosol Sci. 35 889

    [6]

    [6]Wang L, Marchisio1 D L, Vigil R D, Fox R O 2005 J. Colloid Interf. Sci. 282 380

    [7]

    [7]Liu S, Lin J Z 2008 J. Hydrodyn. 20 1

    [8]

    [8]Lemmetty M, Ronkko T, Virtanen A, Keskinen J, Pirjola L 2008 Aerosol Sci. Technol. 42 916

    [9]

    [9]Miller S E, Garrick S C 2004 Aerosol Sci. Technol. 38 79

    [10]

    ]Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C 2007 Int. J. Nonlin. Sci. Num. 81 45

    [11]

    ]Yu M Z, Lin J Z, Chen L H 2007 J. Appl. Math. Mech. 28 1445

    [12]

    ]Yu M Z, Lin J Z, Chen L H 2006 Acta Mech. Sin. 22 29

    [13]

    ]Yin Z Q, Lin J Z, Zhou K, Chan T L 2007 Int. J. Nonlin. Sci. Num. 81 535

    [14]

    ]Yu M Z, Lin J Z, Xiong H B 2007 Chin. J. Chem. Eng. 15 828

    [15]

    ]Yu M Z, Lin J Z, Chan T L 2008 Powder Technol. 181 9

    [16]

    ]Yin Z Q, Lin J Z, Zhou K 2008 J. Appl. Math. Mech. 29 153

    [17]

    ]Yu M Z, Lin J Z, Chan T L 2008 Chem. Eng. Sci. 63 2317

    [18]

    ]Feng Y, Lin J Z 2008 Chin. Phys. 17 4547

    [19]

    ]Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphase Flow 29 1355

    [20]

    ]Smagorinsky J 1963 Month. Wea. Rev. 91 99

    [21]

    ]Fox R O 2003 Computational Models for Turbulent Reacting Flow (Oxford: Oxford University Press)

    [22]

    ]Marchisio D L, Fox R O 2005 J. Aerosol Sci. 36 43

    [23]

    ]Vanni M 2000 J. Colloid Interf. Sci. 221 143

    [24]

    ]Diemer R B, Olson J H 2002 Chem. Eng. Sci. 57 2211

    [25]

    ]Park S H, Lee K W, Otto E, Fissan H 1999 J. Aerosol Sci. 30 3

    [26]

    ]Otto E, Fissan H 1999 Adv. Powder Technol. 10 1

    [27]

    ]McGraw R, Nemesure S, Schwartz S E 1998 J. Aerosol Sci. 29 761

    [28]

    ]Holmes N S 2007 Atmos. Environ. 41 2183

    [29]

    ]Vehkamaki H, Kulmala M, Lehtinen K E J, Noppel M 2003 Environ. Sci. Technol. 37 3392

    [30]

    ]Upadhyay R R, Ezekoye O A 2006 J. Aerosol Sci. 37 799

    [31]

    ]Otto E, Fissan H, Park S H, Lee K W, Otto E 1999 J. Aerosol 2 Sci. 30 17

    [32]

    ]Pratsinis S E, Kim K S 1989 J. Aerosol Sci. 20 101

    [33]

    ]Le Ribault C, Sarkar S, Stanley S A 1999 Phys. Fluids 11 3069

    [34]

    ]Thomas F O, Chu H C 1989 Phys. Fluids 1 1566

    [35]

    ]Vehkamaki H, Kulmala M, Napari I, Lehtinen K E J, Timmreck C, Noppel M, Laaksonen A 2002 J. Geophys. Res. 107 4622

  • [1]

    [1]Penttinen P, Timonen K L, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen L 2001 Environ. Health Perspect. 109 319

    [2]

    [2]Meng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009  (in Chinese) [孟利军、张凯旺、钟建新 2007 56 1009]

    [3]

    [3]Li J, Liu W L, Meng L J, Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese)[李俊、刘文亮、孟利军、张凯旺、钟建新 2008   57 382]

    [4]

    [4]Friedlander S K 2000 Smoke, Dust, and Haze : Fundamentals of Aerosol Dynamics (Oxford: Oxford University Press )

    [5]

    [5]Talukdar S S, Swihart M T 2004 J. Aerosol Sci. 35 889

    [6]

    [6]Wang L, Marchisio1 D L, Vigil R D, Fox R O 2005 J. Colloid Interf. Sci. 282 380

    [7]

    [7]Liu S, Lin J Z 2008 J. Hydrodyn. 20 1

    [8]

    [8]Lemmetty M, Ronkko T, Virtanen A, Keskinen J, Pirjola L 2008 Aerosol Sci. Technol. 42 916

    [9]

    [9]Miller S E, Garrick S C 2004 Aerosol Sci. Technol. 38 79

    [10]

    ]Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C 2007 Int. J. Nonlin. Sci. Num. 81 45

    [11]

    ]Yu M Z, Lin J Z, Chen L H 2007 J. Appl. Math. Mech. 28 1445

    [12]

    ]Yu M Z, Lin J Z, Chen L H 2006 Acta Mech. Sin. 22 29

    [13]

    ]Yin Z Q, Lin J Z, Zhou K, Chan T L 2007 Int. J. Nonlin. Sci. Num. 81 535

    [14]

    ]Yu M Z, Lin J Z, Xiong H B 2007 Chin. J. Chem. Eng. 15 828

    [15]

    ]Yu M Z, Lin J Z, Chan T L 2008 Powder Technol. 181 9

    [16]

    ]Yin Z Q, Lin J Z, Zhou K 2008 J. Appl. Math. Mech. 29 153

    [17]

    ]Yu M Z, Lin J Z, Chan T L 2008 Chem. Eng. Sci. 63 2317

    [18]

    ]Feng Y, Lin J Z 2008 Chin. Phys. 17 4547

    [19]

    ]Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphase Flow 29 1355

    [20]

    ]Smagorinsky J 1963 Month. Wea. Rev. 91 99

    [21]

    ]Fox R O 2003 Computational Models for Turbulent Reacting Flow (Oxford: Oxford University Press)

    [22]

    ]Marchisio D L, Fox R O 2005 J. Aerosol Sci. 36 43

    [23]

    ]Vanni M 2000 J. Colloid Interf. Sci. 221 143

    [24]

    ]Diemer R B, Olson J H 2002 Chem. Eng. Sci. 57 2211

    [25]

    ]Park S H, Lee K W, Otto E, Fissan H 1999 J. Aerosol Sci. 30 3

    [26]

    ]Otto E, Fissan H 1999 Adv. Powder Technol. 10 1

    [27]

    ]McGraw R, Nemesure S, Schwartz S E 1998 J. Aerosol Sci. 29 761

    [28]

    ]Holmes N S 2007 Atmos. Environ. 41 2183

    [29]

    ]Vehkamaki H, Kulmala M, Lehtinen K E J, Noppel M 2003 Environ. Sci. Technol. 37 3392

    [30]

    ]Upadhyay R R, Ezekoye O A 2006 J. Aerosol Sci. 37 799

    [31]

    ]Otto E, Fissan H, Park S H, Lee K W, Otto E 1999 J. Aerosol 2 Sci. 30 17

    [32]

    ]Pratsinis S E, Kim K S 1989 J. Aerosol Sci. 20 101

    [33]

    ]Le Ribault C, Sarkar S, Stanley S A 1999 Phys. Fluids 11 3069

    [34]

    ]Thomas F O, Chu H C 1989 Phys. Fluids 1 1566

    [35]

    ]Vehkamaki H, Kulmala M, Napari I, Lehtinen K E J, Timmreck C, Noppel M, Laaksonen A 2002 J. Geophys. Res. 107 4622

  • [1] Liu Wang-Wang, Zhang Ke-Xue, Wang Jun, Xia Guo-Dong. Simulation study of drag force characteristics of nanoparticles in transition regime. Acta Physica Sinica, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] Ma Ao-Jie, Chen Song-Jia, Li Yu-Xiu, Chen Ying. Molecular dynamics simulation of Brownian diffusion boundary condition for nanoparticles. Acta Physica Sinica, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] Cui Jie, Su Jun-Jie, Wang Jun, Xia Guo-Dong, Li Zhi-Gang. Thermophoretic force on nanoparticles in free molecule regime. Acta Physica Sinica, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [4] Zhang Xuan, Zhang Tian-Ci, Ge Ji-Jiang, Jiang Ping, Zhang Gui-Cai. Effect of surfactants on adsorption behavior of nanoparicles at gas-liquid surface. Acta Physica Sinica, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [5] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [6] Xu Bo, Wang Shu-Lin, Li Sheng-Juan, Li Lai-qiang. Study of synthesis and mechanism of MgFe2O4 nanoparticles by ultrasonic Intensify. Acta Physica Sinica, 2012, 61(3): 030703. doi: 10.7498/aps.61.030703
    [7] Zang Du-Yang, Zhang Yong-Jian. Interfacial rheological study of silica nanoparticle monolayer by an indentation approach. Acta Physica Sinica, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [8] Wang Xin-Liang, Di Qin-Feng, Zhang Ren-Liang, Ding Wei-Peng, Gong Wei, Chen Yi-Chong. The strong hydrophobic properties on nanoparticles adsorbed core surfaces. Acta Physica Sinica, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [9] Langevin Dominique, Zhang Yong-Jian, Zang Du-Yang. Rheological study of silica nanoparticle monolayers via two orthogonal Wilhelmy plates. Acta Physica Sinica, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [10] Chen Hui-Min, Liu En-Long. Theoretical calculation of molar heat capacity at constant pressureof nanoparticle and nanocrystalline. Acta Physica Sinica, 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [11] Deng Ze-Chao, Luo Qing-Shan, Ding Xue-Cheng, Chu Li-Zhi, Liang Wei-Hua, Chen Jin-Zhong, Fu Guang-Sheng, Wang Ying-Long. Pressure threshold and dynamics of nucleation for Si nano-crystal grains prepared by pulsed laser ablation. Acta Physica Sinica, 2011, 60(12): 126801. doi: 10.7498/aps.60.126801
    [12] Mi Jian-Chun, Feng Bao-Ping. Centerline characteristic scales of a turbulent plane jet and their dependence on filtration of measured signals. Acta Physica Sinica, 2010, 59(7): 4748-4755. doi: 10.7498/aps.59.4748
    [13] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [14] Mi Jian-Chun, Feng Bao-Ping, Deo Ravinesh C, Nathan Graham J. Effect of exit Reynolds number on self-preservation of a plane jet. Acta Physica Sinica, 2009, 58(11): 7756-7764. doi: 10.7498/aps.58.7756
    [15] Li Hui, Xie Er-Qing, Zhang Hong-Liang, Pan Xiao-Jun, Zhang Yong-Zhe. Optical properties of ZnO and MgxZn1-xO nanoparticles prepared by flame spray synthesis. Acta Physica Sinica, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [16] Liu Jin-Hong, Zhang Ling-Fei, Tian Geng-Fang, Li Ji-Chen, Li Fa-Shen. Structure and magnetic properties of NiFe2O4 nanoparticles prepared by low-temperature solid-state reaction. Acta Physica Sinica, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [17] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] Zang Jing-Cun, Tian Zhan-Kui, Liu Yan-Hang, Chi Jing, Zou Yu-Lin, Wei Jian-Zhong, Ye Jian-Ping. Nucleation-growth and spinodal decomposition of zinc oxide films prepared by sol-gel technique. Acta Physica Sinica, 2006, 55(3): 1358-1362. doi: 10.7498/aps.55.1358
    [19] Shu Xue-Ming, Fang Jun, Shen Shi-Fei, Liu Yong-Jin, Yuan Hong-Yong, Fan Wei-Cheng. Study on fractal coagulation characteristics of fire smoke particles. Acta Physica Sinica, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [20] Wang Xiao-Ping, Xie Feng, Shi Qin-Wei, Zhao Te-Xiu. The effect of lattice mismatch on the nucleation process of heteroepitaxial growth of ultrathin film. Acta Physica Sinica, 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
Metrics
  • Abstract views:  8168
  • PDF Downloads:  679
  • Cited By: 0
Publishing process
  • Received Date:  28 July 2009
  • Accepted Date:  06 November 2009
  • Published Online:  05 March 2010

/

返回文章
返回
Baidu
map