搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究

臧渡洋 张永建 Langevin Dominique

引用本文:
Citation:

SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究

臧渡洋, 张永建, Langevin Dominique

Rheological study of silica nanoparticle monolayers via two orthogonal Wilhelmy plates

Langevin Dominique, Zhang Yong-Jian, Zang Du-Yang
PDF
导出引用
  • 本文采用两个互相垂直的Wilhelmy片对不同润湿性的SiO2纳米颗粒单层膜的表面压和黏弹性进行了研究, 并利用Brewster角显微镜(BAM)对单层膜的形貌演变进行了观测. 实验发现, 当水面完全被颗粒覆盖时, 单层膜的表面压具有明显的各向异性, 中等润湿性(34%SiOH)的颗粒膜其表面压各向异性最大. 压缩模量E和剪切模量G均在中等润湿性时出现最大值. 这些结果表明, 单层膜的流变性能与泡沫的稳定性密切相关. 疏水性最强(20%SiOH)的颗粒膜具
    We investigate the rheological properties of silica nanoparticle monolayers at the air-water interface by using two orthogonal Wilhelmy plates in the Langmuir trough and Brewster angle microscopy (BAM). Remarkable anisotropic effect of surface pressure is observed when the layers are fully covered by particles. The pressure anisotropy is the most prominent for the layer of particles with 34%SiOH on their surface. The elastic compression and the shear moduli present the maxima at intermediate hydrophobicity. The dependence of rheological properties on particle hydrophobicity is closely related to the foamability and the stability of the foams made from these particle dispersions. A shape memory effect is observed in the condensed layer of the most hydrophobic particle(20%SiOH), which may result from the irreversible organization of particles and the particle arrangement driven by the inner stress stored in the layer.
    • 基金项目: 国家留学基金和西北工业大学基金研究基金(批准号:NPU-FFR-JC20100242)资助的课题.
    [1]

    Huang J X, Kim F, Tao A R, Conner S, Yang P D 2005 Nature Materials 4 896

    [2]

    Lin B J, Chen L J 2007 J. Chem. Phys. 126 034706

    [3]

    Binks B P 2002 Curr. Opin. Colloid Interface Sci. 7 21

    [4]

    Reynaert S, Moldenaers P, Vermant J 2007 Phys. Chem. Chem. Phys. 9 6463

    [5]

    Pickering S U 1907 J. Chem. Soc. 91 2001

    [6]

    Fujii S, Ryan A J, Armes S P 2006 J. Am. Chem. Soc. 128 7882

    [7]

    Gonzenbach U T, Studart A R, Tervoort E, Gauckler L J 2006 Angew. Chem. Int. Ed. 45 3526

    [8]

    Binks B P, Horozov T S 2005 Angew. Chem. Int. Ed. 44 3722

    [9]

    Cervantes-Martinez A, Rio E, Delon G, Saint-Jalmes A, Langevin D, Binks B P 2008 Soft Matter 4 1531

    [10]

    Horozov T S 2008 Curr. Opin. Colloid Interface Sci. 13 134

    [11]

    Vella D, Aussillous P, Mahadevan L 2004 Europhys. Lett. 68 212

    [12]

    Cicuta P, Stancik E J, Fuller G G, 2003 Phys. Rew. Lett. 90 236101

    [13]

    Jiang L, Zhao F, Tang J A, Zhu H, Li J R, Li B B 2001 Chin. Sci. Bull. 46 737

    [14]

    Wyss H M, Miyazaki K 2007 Phys. Rew. Lett. 98 238303

    [15]

    Xu S J, Men S Q, Wang B, Lu K Q 2000 Acta Phys. Sin. 49 2176 (in Chinese)[许素娟、门守强、王 彪、陆坤权 2000 49 2176 ]

    [16]

    Gibbs J W 1961 Collected Works vol. 1(Dover Publishing Co. Inc, New York) p. 301

    [17]

    Gaines G L 1966 Insoluble monolayers at liquid-gas surfaces, (John Wiley, New York)

    [18]

    Hilles H, Maestro A, Monroy F, Ortega F, Rubio R G 2007 J. Phys. Chem. 126 124904

    [19]

    Georgieva D, Schmitt V, Leal-Calderon F, Langevin D 2009 Langmuir 25 5565

    [20]

    Georgieva D, Cagna A, Langevin D 2009 Soft Matter 5 2063

    [21]

    Erni P, Fischer P, Windhab E J, Kusnezov V, Stettin H, Läuger J 2003 Rev. Sci. Instr. 74 4916

    [22]

    Petkov J T, Gurkov T D 2000 Langmuir 16 3703

    [23]

    Ferenczi T A M, Cicuta P 2005 J. Phys.: Condens. Matter 17 S3445

    [24]

    Safouane M, Langevin D, Binks B P 2007 Langmuir 23 11546

    [25]

    Zang D Y, Rio E, Langevin D, Wei B, Binks B P 2010 Eur. Phys. J. E 31 125

    [26]

    Zang D Y, Stocco A, Langevin D, Wei B, Binks B P 2009 Phys. Chem. Chem. Phys. 11 9522

    [27]

    Kostakis T, Ettelaie R, Murray B S 2006 Langmuir 22 1273

    [28]

    Wijmans C M, Dickinson E 1998 Langmuir 14 7278

    [29]

    Zang D Y, Langevin D, Binks B P, Wei B 2010 Phys. Rev. E 81 011604

  • [1]

    Huang J X, Kim F, Tao A R, Conner S, Yang P D 2005 Nature Materials 4 896

    [2]

    Lin B J, Chen L J 2007 J. Chem. Phys. 126 034706

    [3]

    Binks B P 2002 Curr. Opin. Colloid Interface Sci. 7 21

    [4]

    Reynaert S, Moldenaers P, Vermant J 2007 Phys. Chem. Chem. Phys. 9 6463

    [5]

    Pickering S U 1907 J. Chem. Soc. 91 2001

    [6]

    Fujii S, Ryan A J, Armes S P 2006 J. Am. Chem. Soc. 128 7882

    [7]

    Gonzenbach U T, Studart A R, Tervoort E, Gauckler L J 2006 Angew. Chem. Int. Ed. 45 3526

    [8]

    Binks B P, Horozov T S 2005 Angew. Chem. Int. Ed. 44 3722

    [9]

    Cervantes-Martinez A, Rio E, Delon G, Saint-Jalmes A, Langevin D, Binks B P 2008 Soft Matter 4 1531

    [10]

    Horozov T S 2008 Curr. Opin. Colloid Interface Sci. 13 134

    [11]

    Vella D, Aussillous P, Mahadevan L 2004 Europhys. Lett. 68 212

    [12]

    Cicuta P, Stancik E J, Fuller G G, 2003 Phys. Rew. Lett. 90 236101

    [13]

    Jiang L, Zhao F, Tang J A, Zhu H, Li J R, Li B B 2001 Chin. Sci. Bull. 46 737

    [14]

    Wyss H M, Miyazaki K 2007 Phys. Rew. Lett. 98 238303

    [15]

    Xu S J, Men S Q, Wang B, Lu K Q 2000 Acta Phys. Sin. 49 2176 (in Chinese)[许素娟、门守强、王 彪、陆坤权 2000 49 2176 ]

    [16]

    Gibbs J W 1961 Collected Works vol. 1(Dover Publishing Co. Inc, New York) p. 301

    [17]

    Gaines G L 1966 Insoluble monolayers at liquid-gas surfaces, (John Wiley, New York)

    [18]

    Hilles H, Maestro A, Monroy F, Ortega F, Rubio R G 2007 J. Phys. Chem. 126 124904

    [19]

    Georgieva D, Schmitt V, Leal-Calderon F, Langevin D 2009 Langmuir 25 5565

    [20]

    Georgieva D, Cagna A, Langevin D 2009 Soft Matter 5 2063

    [21]

    Erni P, Fischer P, Windhab E J, Kusnezov V, Stettin H, Läuger J 2003 Rev. Sci. Instr. 74 4916

    [22]

    Petkov J T, Gurkov T D 2000 Langmuir 16 3703

    [23]

    Ferenczi T A M, Cicuta P 2005 J. Phys.: Condens. Matter 17 S3445

    [24]

    Safouane M, Langevin D, Binks B P 2007 Langmuir 23 11546

    [25]

    Zang D Y, Rio E, Langevin D, Wei B, Binks B P 2010 Eur. Phys. J. E 31 125

    [26]

    Zang D Y, Stocco A, Langevin D, Wei B, Binks B P 2009 Phys. Chem. Chem. Phys. 11 9522

    [27]

    Kostakis T, Ettelaie R, Murray B S 2006 Langmuir 22 1273

    [28]

    Wijmans C M, Dickinson E 1998 Langmuir 14 7278

    [29]

    Zang D Y, Langevin D, Binks B P, Wei B 2010 Phys. Rev. E 81 011604

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究.  , 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算.  , 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [4] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响.  , 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [5] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟.  , 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] 孙保安, 王利峰, 邵建华. 非晶力学流变的自组织临界行为.  , 2017, 66(17): 178103. doi: 10.7498/aps.66.178103
    [7] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构.  , 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [8] 李白, 吴太权, 汪辰超, 江影. Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构.  , 2016, 65(21): 216301. doi: 10.7498/aps.65.216301
    [9] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟.  , 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [10] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [11] 徐波, 王树林, 李生娟, 李来强. 超声强化合成MgFe2O4纳米颗粒及其机理研究.  , 2012, 61(3): 030703. doi: 10.7498/aps.61.030703
    [12] 王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀. 纳米颗粒吸附岩心表面的强疏水特征.  , 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [13] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究.  , 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [14] 陈慧敏, 刘恩隆. 纳米颗粒与纳米块材摩尔定压热容的理论计算.  , 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [15] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并.  , 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [16] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响.  , 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [17] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究.  , 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [18] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性.  , 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [19] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [20] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究.  , 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
计量
  • 文章访问数:  8568
  • PDF下载量:  765
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-13
  • 修回日期:  2011-01-26
  • 刊出日期:  2011-07-15

/

返回文章
返回
Baidu
map