搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超材料谐振子间的电耦合谐振理论与实验研究

梁浩 李剑生 郭云胜

引用本文:
Citation:

超材料谐振子间的电耦合谐振理论与实验研究

梁浩, 李剑生, 郭云胜

Theoretical and experimental study of the electric resonant coupling between two metamaterial resonators

Liang Hao, Li Jian-Sheng, Guo Yun-Sheng
PDF
导出引用
  • 通过将两个金属开口环谐振器口对口地放置, 实现了超材料谐振子间的电耦合谐振. 对电耦合谐振的微波等效电路进行了理论分析和数值计算, 结果表明耦合后的超材料谐振子能产生两个谐振频率, 其中一个随耦合强度的增加逐渐向低频方向移动, 而另一个固定在单谐振子的谐振频率处不变. 微波透射谱的实验测试和电磁仿真结果表明, 两个谐振峰随耦合强度的增加分别向低频和高频方向移动. 分析表明: 低频谐振峰的位置主要是由超材料谐振子间的电耦合强度决定的; 高频谐振偏离单谐振子的谐振频率主要是由不可避免的磁耦合引起的, 而且在耦合间距越小时磁耦合影响越大. 提出的基于超材料谐振子间的电磁耦合实现的双频谐振及其可调性极大地增加了超材料的设计与应用空间.
    In this paper, we realize the electrically coupled resonances between two metamaterial resonators based on two metal split-ring resonators gap-to-gap placed. The theoretical analysis and numerical calculation of the microwave equivalent circuit of the electrically coupled metamaterial resonators are performed. The results show that there are two resonance frequencies produced by the two coupled metamaterial resonators. For the two resonance frequencies, one gradually shifts towards the lower frequency with the coupling strength increasing, while the other is fixed at the resonance frequency of the single metamaterial resonator. The measured and simulated results of the microwave transmission spectra show that the two resonance peaks move respectively towards the lower and higher frequency with the coupling strength increasing. The analysis shows that the lower resonance frequency is mainly determined by the electrical coupling strength between the two metamaterial resonators, and the difference between the higher resonance frequency and the resonance frequency of the single resonator is mainly caused by the inevitable magnetic coupling between the two resonators. Moreover, the smaller the coupling space, the greater the influence of magnetic coupling is. The proposed dual resonance property and its tunability based on the electromagnetic coupling between the two metamaterial resonators greatly enhance the scopes of the design and application for metamaterials.
    • 基金项目: 内蒙古自然科学基金(批准号: 2015MS0107)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Inner Mongolia, China (Grant No. 2015MS0107).
    [1]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [2]

    Florijn B, Coulais C, van Hecke M 2014 Phys. Rev. Lett. 113 175503

    [3]

    Silva A, Monticone F, Castaldi G, Galdi V, Alu A, Engheta N 2014 Science 343 160

    [4]

    Moitra P, Yang Y M, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

    [5]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [6]

    Shalaev V M 2007 Nat. Photon. 1 41

    [7]

    Huang H Y, Ding S, Wang B Z, Zang R 2014 Chin. Phys. B 23 064101

    [8]

    Li T H, Huang M, Yang J J, Yuan G, Cai G H 2014 Chin. Phys. B 23 054102

    [9]

    Al-Naib I A I, Jansen C, Koch M 2008 Appl. Phys. Lett. 93 083507

    [10]

    Schneider A, Shuvaev A, Engelbrecht S, Demokritov S O, Pimenov A 2009 Phys. Rev. Lett. 103 103907

    [11]

    Burckel D B, Wendt J R, Ten Eyck G A, Ellis A R, Brener I, Sinclair M B 2010 Adv. Mater. 22 3171

    [12]

    Gabbay A, Reno J, Wendt J R, Gin A, Wanke M C, Sinclair M B, Shaner E, Brener I 2011 Appl. Phys. Lett. 98 203103

    [13]

    Guclu C, Luk T S, Wang G T, Capolino F 2014 Appl. Phys. Lett. 105 123101

    [14]

    Li T Q, Liu H, Li T, Wang S M, Wang F M, Wu R X, Chen P, Zhu S N, Zhang X 2008 Appl. Phys. Lett. 92 131111

    [15]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101

    [16]

    Liu N, Liu H, Zhu S N, Giessen H 2009 Nat. Photon. 3 157

    [17]

    Cheng Y Z, Gong R Z, Cheng Z Z, Nie Y 2014 Appl. Opt. 53 5763

    [18]

    Cheng Y Z, Nie Y, Cheng Z Z, Gong R Z 2014 Prog. Electromagn. Res. 145 263

    [19]

    Cheng Y Z, Cheng Z Z 2011 Microw. Opt. Technol. Lett. 53 615

    [20]

    Zhou J F, Economon E N, Koschny T, Soukoulis C M 2006 Opt. Lett. 31 3620

  • [1]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [2]

    Florijn B, Coulais C, van Hecke M 2014 Phys. Rev. Lett. 113 175503

    [3]

    Silva A, Monticone F, Castaldi G, Galdi V, Alu A, Engheta N 2014 Science 343 160

    [4]

    Moitra P, Yang Y M, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

    [5]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [6]

    Shalaev V M 2007 Nat. Photon. 1 41

    [7]

    Huang H Y, Ding S, Wang B Z, Zang R 2014 Chin. Phys. B 23 064101

    [8]

    Li T H, Huang M, Yang J J, Yuan G, Cai G H 2014 Chin. Phys. B 23 054102

    [9]

    Al-Naib I A I, Jansen C, Koch M 2008 Appl. Phys. Lett. 93 083507

    [10]

    Schneider A, Shuvaev A, Engelbrecht S, Demokritov S O, Pimenov A 2009 Phys. Rev. Lett. 103 103907

    [11]

    Burckel D B, Wendt J R, Ten Eyck G A, Ellis A R, Brener I, Sinclair M B 2010 Adv. Mater. 22 3171

    [12]

    Gabbay A, Reno J, Wendt J R, Gin A, Wanke M C, Sinclair M B, Shaner E, Brener I 2011 Appl. Phys. Lett. 98 203103

    [13]

    Guclu C, Luk T S, Wang G T, Capolino F 2014 Appl. Phys. Lett. 105 123101

    [14]

    Li T Q, Liu H, Li T, Wang S M, Wang F M, Wu R X, Chen P, Zhu S N, Zhang X 2008 Appl. Phys. Lett. 92 131111

    [15]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101

    [16]

    Liu N, Liu H, Zhu S N, Giessen H 2009 Nat. Photon. 3 157

    [17]

    Cheng Y Z, Gong R Z, Cheng Z Z, Nie Y 2014 Appl. Opt. 53 5763

    [18]

    Cheng Y Z, Nie Y, Cheng Z Z, Gong R Z 2014 Prog. Electromagn. Res. 145 263

    [19]

    Cheng Y Z, Cheng Z Z 2011 Microw. Opt. Technol. Lett. 53 615

    [20]

    Zhou J F, Economon E N, Koschny T, Soukoulis C M 2006 Opt. Lett. 31 3620

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241300
    [2] 袁金健, 顾民, 黄润生. 运动界面的电磁波相位匹配.  , 2024, 73(13): 134201. doi: 10.7498/aps.73.20240269
    [3] 孟令辉, 任洪波, 刘建晓. 高温等离子体中太赫兹波的传输特性.  , 2018, 67(17): 174101. doi: 10.7498/aps.67.20180647
    [4] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究.  , 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [5] 刘俊群, 刘耀文. 若干电磁波完全极化参数组的完备变换关系.  , 2017, 66(5): 054101. doi: 10.7498/aps.66.054101
    [6] 杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减.  , 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [7] 杨涓, 李鹏飞, 杨乐. 不同功率下无工质微波推力器的推力预估.  , 2011, 60(12): 124101. doi: 10.7498/aps.60.124101
    [8] 周磊, 唐昌建. 不均匀等离子体中电磁波与Langmuir波的相互作用.  , 2009, 58(12): 8254-8259. doi: 10.7498/aps.58.8254
    [9] 杨涓, 龙春伟, 陈茂林, 许映桥, 谭小群. 外加磁场微波等离子体喷流对平面电磁波衰减的实验研究.  , 2009, 58(7): 4793-4798. doi: 10.7498/aps.58.4793
    [10] 肖贤波, 李小毛, 周光辉. 电磁波辐照下量子线的电子自旋极化输运性质.  , 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [11] 杨 涓, 朱 冰, 毛根旺, 许映乔, 刘俊平. 真空中不同极化电磁波在微波等离子体喷流中的衰减特性实验研究.  , 2007, 56(12): 7120-7126. doi: 10.7498/aps.56.7120
    [12] 杨宏伟, 陈如山, 张 云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析.  , 2006, 55(7): 3464-3469. doi: 10.7498/aps.55.3464
    [13] 朱 冰, 杨 涓, 黄雪刚, 毛根旺, 刘俊平. 真空环境中等离子体喷流对反射电磁波衰减的实验研究.  , 2006, 55(5): 2352-2356. doi: 10.7498/aps.55.2352
    [14] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究.  , 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [15] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解.  , 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [16] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减.  , 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [17] 王少宏, B.Ferguson, 张存林, 张希成. Terahertz波计算机辅助三维层析成像技术.  , 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
    [18] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析.  , 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [19] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析.  , 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [20] 刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣. 电磁波在大气层人造等离子体中的衰减特性.  , 2002, 51(6): 1317-1320. doi: 10.7498/aps.51.1317
计量
  • 文章访问数:  6923
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-19
  • 修回日期:  2015-01-26
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map