-
非晶材料因其跨尺度结构均一性, 规避了传统晶体材料晶格缺陷敏感的固有特性, 在众多高技术领域具有不可替代的重要应用. 然而, 由于处于热力学非平衡态, 非晶材料会发生趋于平衡态的结构弛豫, 导致服役过程中的性能退化甚至失效. 此外, 非晶结构的无序性、复杂性伴随产生玻色峰与隧穿二能级系统等低能激发模式, 引发材料内耗与热噪声, 制约其在高端技术设备中的性能表现. 因此, 如何有效提升非晶材料的稳定性、抑制低能激发, 成为突破其性能极限的关键所在. 近年来研究发现, 基于材料表面动力学特性的原子级制造, 可成功制备超稳非晶材料, 实现对非晶材料微观结构、稳定性及低能激发进行常规方法难以企及的有效调控. 超稳非晶材料所具有的独特优势使其在引力波探测等尖端领域展现出巨大的应用潜力. 本文将深入探讨非晶材料中原子级制造的机理, 重点阐述超稳非晶材料相较于普通非晶材料的结构特征与性能优越性, 并展望原子级制造在非晶材料和物质领域未来的研究方向与发展趋势.Amorphous materials avoid the inherent sensitivity to defects in traditional crystalline materials due to their cross-scale structural uniformity. Therefore, they have irreplaceable and important applications in many advanced technical fields. However, due to their thermodynamically non-equilibrium nature, amorphous materials experience structural relaxation towards equilibrium, leading to performance degradation or even failure during use. Additionally, the complex and disordered structure of amorphous materials results in low-energy excitation, such as boson peaks and tunneling two-level systems, which can cause internal friction and thermal noise in the materials. These factors significantly limit their performance in advanced technical applications. Therefore, effectively improving the stability of amorphous materials and suppressing low-energy excitation are key steps towards breaking through their performance limits. Recent studies have shown that atomic-level fabrication based on enhanced surface dynamics can successfully produce ultrastable amorphous materials, achieving unprecedented control over their microstructure, stability, and low-energy excitation, far exceeding the level achievable by traditional methods. The exceptional advantages of ultrastable amorphous materials endow them with significant application potential in advanced domains such as gravitational wave detection. This article delves into the underlying mechanisms of atomic-level fabrication for amorphous materials, highlighting their structural features and superior performances compared with traditional amorphous materials, and it also outlines future research directions and development trends of atomic-level fabrication in this field.
-
Keywords:
- amorphous materials /
- glass /
- stability /
- atomic-level fabrication
[1] Gravitational Waves Detected 100 Years After Einstein’s Prediction https://www.ligo.caltech.edu/news/ligo20160211 [2025-06-22]
[2] Humankind’s Most Important Material Main D https://www.theatlantic.com/technology/archive/2018/04/humankinds-most-important-material/557315/ [2025-06-22]
[3] Kennedy D, Norman C 2005 Science 309 75
Google Scholar
[4] Hodge I M 1995 Science 267 1945
Google Scholar
[5] Meng S Y, Hao Q, Wang B, Wang Y J, Pineda E, Qiao J C 2025 J. Appl. Phys. 137 055108
Google Scholar
[6] Luo P, Lu Z, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. B 93 104204
Google Scholar
[7] Luo P, Wen P, Bai H Y, Ruta B, Wang W H 2017 Phys. Rev. Lett. 118 225901
Google Scholar
[8] Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116 175901
Google Scholar
[9] 汪卫华, 罗鹏 2018 金属学报 54 1479
Google Scholar
Wang W, Luo P 2018 Acta Metall. Sin. 54 1479
Google Scholar
[10] Luo P, Li M X, Jiang H Y, Wen P, Bai H Y, Wang W H 2017 J. Appl. Phys. 121 135104
Google Scholar
[11] Ruta B, Chushkin Y, Monaco G, Cipelletti L, Pineda E, Bruna P, Giordano V M, Gonzalez-Silveira M 2012 Phys. Rev. Lett. 109 165701
Google Scholar
[12] Giordano V M, Ruta B 2016 Nat. Commun. 7 10344
Google Scholar
[13] Evenson Z, Ruta B, Hechler S, Stolpe M, Pineda E, Gallino I, Busch R 2015 Phys. Rev. Lett. 115 175701
Google Scholar
[14] Wang Z, Riechers B, Derlet P M, Maaß R 2024 Acta Mater. 267 119730
Google Scholar
[15] Riechers B, Das A, Dufresne E, Derlet P M, Maaß R 2024 Nat. Commun. 15 6595
Google Scholar
[16] Luo P, Li M X, Jiang H Y, Zhao R, Zontone F, Zeng Q S, Bai H Y, Ruta B, Wang W H 2020 Phys. Rev. B 102 054108
Google Scholar
[17] Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M 2017 Phys. Rev. Lett. 119 215501
Google Scholar
[18] Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965
Google Scholar
[19] Mauro J C, Uzun S S, Bras W, Sen S 2009 Phys. Rev. Lett. 102 155506
Google Scholar
[20] Müller C, Cole J H, Lisenfeld J 2019 Rep. Prog. Phys. 82 124501
Google Scholar
[21] Yang L, Vajente G, Fazio M, Ananyeva A, Billingsley G, Markosyan A, Bassiri R, Prasai K, Fejer M M, Chicoine M, Schiettekatte F, Menoni C S 2021 Sci. Adv. 7 eabh1117
Google Scholar
[22] Meißner A, Voigtländer T, Meißner S M, Kühn U, Schneider S, Shnirman A, Weiss G 2021 Phys. Rev. B 103 224209
Google Scholar
[23] Monroe C, Kim J 2013 Science 339 1169
Google Scholar
[24] Stephens R, Liu X 2021 Low Energy Excitations in Disordered Solids (World Scientific, Singapore
[25] Luo P, Fakhraai Z 2023 Annu. Rev. Phys. Chem. 74 361
Google Scholar
[26] Ediger M D 2017 J. Chem. Phys. 147 210901
Google Scholar
[27] Rodriguez-Tinoco C, Gonzalez-Silveira M, Ramos M A, Rodriguez-Viejo J 2022 Riv. Nuovo Cim. 45 325
Google Scholar
[28] Chen F, Lam C H, Tsui O K C 2014 Science 343 975
Google Scholar
[29] Zhu L, Brian C W, Swallen S F, Straus P T, Ediger M D, Yu L 2011 Phys. Rev. Lett. 106 256103
Google Scholar
[30] Luo P, Cao C R, Zhu F, Lü Y M, Liu Y H, Wen P, Bai H Y, Vaughan G, di Michiel M, Ruta B, Wang W H 2018 Nat. Commun. 9 1389
Google Scholar
[31] Luo P, Jaramillo C, Wallum A M, Liu Z T, Zhao R, Shen L Q, Zhai Y Q, Spear J C, Curreli D, Lyding J W, Gruebele M, Wang W H, Allain J P 2020 ACS Appl. Nano. Mater. 3 12025
Google Scholar
[32] Zhang Y, Fakhraai Z 2017 Phys. Rev. Lett. 118 066101
Google Scholar
[33] Zhang Y, Fakhraai Z 2017 Proc. Natl. Acad. Sci. USA 114 4915
Google Scholar
[34] Zhang Y, Glor E C, Li M, Liu T Y, Wahid K, Zhang W, Riggleman R A, Fakhraai Z 2016 J. Chem. Phys. 145 114502
Google Scholar
[35] Fakhraai Z, Forrest J A 2008 Science 319 600
Google Scholar
[36] Hao Z, Ghanekarade A, Zhu N, Randazzo K, Kawaguchi D, Tanaka K, Wang X, Simmons D S, Priestley R D, Zuo B 2021 Nature 596 372
Google Scholar
[37] Chai Y, Salez T, McGraw J D, Benzaquen M, Dalnoki-Veress K, Raphaël E, Forrest J A 2014 Science 343 994
Google Scholar
[38] Yang Z H, Fujii Y, Lee F K, Lam C H, Tsui O K C 2010 Science 328 1676
Google Scholar
[39] Wang B, Gao X Q, Su R, Guan P F 2024 Sci. China Phys. Mech. Astron. 67 236111
Google Scholar
[40] Bi Q L, Lü Y J, Wang W H 2018 Phys. Rev. Lett. 120 155501
Google Scholar
[41] Sun G, Saw S, Douglass I, Harrowell P 2017 Phys. Rev. Lett. 119 245501
Google Scholar
[42] Ashtekar S, Lyding J, Gruebele M 2012 Phys. Rev. Lett. 109 166103
Google Scholar
[43] Ashtekar S, Nguyen D, Zhao K, Lyding J, Wang W H, Gruebele M 2012 J. Chem. Phys. 137 141102
Google Scholar
[44] Cao C R, Lu Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 107 141606
Google Scholar
[45] Chen L, Cao C R, Shi J A, Lu Z, Sun Y T, Luo P, Gu L, Bai H Y, Pan M X, Wang W H 2017 Phys. Rev. Lett. 118 016101
Google Scholar
[46] Cao C R, Huang K Q, Shi J A, Zheng D N, Wang W H, Gu L, Bai H Y 2019 Nat. Commun. 10 1966
Google Scholar
[47] Ediger M D, Forrest J A 2014 Macromolecules 47 471
Google Scholar
[48] Tian H, Xu Q, Zhang H, Priestley R D, Zuo B 2022 Appl. Phys. Rev. 9 11316
Google Scholar
[49] Ediger M D, Gruebele M, Lubchenko V, Wolynes P G 2021 J. Phys. Chem. B 125 9052
Google Scholar
[50] Liang S Y, Hao Q, Xing G H, Wang B, Wang Y J, Pineda E, Qiao J C 2025 Acta Mater. 293 121125
Google Scholar
[51] Wang B, Gao X, Qiao J 2024 Rare Met. Mater. Eng. 53 70
Google Scholar
[52] Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353
Google Scholar
[53] Kearns K L, Swallen S F, Ediger M D, Wu T, Sun Y, Yu L 2008 J. Phys. Chem. B 112 4934
Google Scholar
[54] Raegen A N, Yin J, Zhou Q, Forrest J A 2020 Nat. Mater. 19 1110
Google Scholar
[55] Moratalla M, Rodríguez-López M, Rodríguez-Tinoco C, Rodríguez-Viejo J, Jiménez-Riobóo R J, Ramos M A 2023 Commun. Phys. 6 274
Google Scholar
[56] Ramos M A, Pérez-Castañeda T, Jiménez-Riobóo R J, Rodrígueziguez-Tinoco C, Rodrígueziguez-Viejo J 2015 Low Temp. Phys. 41 412
Google Scholar
[57] Khomenko D, Scalliet C, Berthier L, Reichman D R, Zamponi F 2020 Phys. Rev. Lett. 124 225901
Google Scholar
[58] Perez-Castaneda T, Rodriguez-Tinoco C, Rodriguez-Viejo J, Ramos M A 2014 Proc. Natl. Acad. Sci. USA 111 11275
Google Scholar
[59] Singh S, Ediger M D, de Pablo J J 2013 Nat. Mater. 12 139
Google Scholar
[60] Bagchi K, Ediger M D 2020 J. Phys. Chem. Lett. 11 6935
Google Scholar
[61] Ediger M D, de Pablo J, Yu L 2019 Acc. Chem. Res. 52 407
Google Scholar
[62] Luo P, Zhu F, Lü Y M, Lu Z, Shen L Q, Zhao R, Sun Y T, Vaughan G B M, di Michiel M, Ruta B, Bai H Y, Wang W H 2021 ACS Appl. Mater. Interfaces 13 40098
Google Scholar
[63] Walters D M, Richert R, Ediger M D 2015 J. Chem. Phys. 142 134504
Google Scholar
[64] Sepúlveda A, Swallen S F, Ediger M D 2013 J. Chem. Phys. 138 12A517
Google Scholar
[65] Dalal S S, Ediger M D 2015 J. Phys. Chem. B 119 3875
Google Scholar
[66] Swallen S F, Traynor K, McMahon R J, Ediger M D, Mates T E 2009 Phys. Rev. Lett. 102 065503
Google Scholar
[67] Parisi G, Sciortino F 2013 Nat. Mater. 12 94
Google Scholar
[68] Parisi G 2022 J. Phys. Complex. 3 040201
Google Scholar
[69] Ozawa M, Biroli G 2023 Phys. Rev. Lett. 130 138201
Google Scholar
[70] Hasyim M R, Mandadapu K K 2024 Proc. Natl. Acad. Sci. USA 121 e2322592121
Google Scholar
[71] Herrero C, Scalliet C, Ediger M D, Berthier L 2023 Proc. Natl. Acad. Sci. USA 120 e2220824120
Google Scholar
[72] Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Vila-Costa A, Martinez-Garcia J C, Rodríguez-Viejo J 2019 Phys. Rev. Lett. 123 155501
Google Scholar
[73] Ruiz-Ruiz M, Vila-Costa A, Bar T, Rodríguez-Tinoco C, Gonzalez-Silveira M, Plaza J A, Alcalá J, Fraxedas J, Rodriguez-Viejo J 2023 Nat. Phys. 19 1509
Google Scholar
[74] Herrero C, Ediger M D, Berthier L 2023 J. Chem. Phys. 159 114504
Google Scholar
[75] Vila-Costa A, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-López M, Rodriguez-Viejo J 2023 Nat. Phys. 19 114
Google Scholar
[76] Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501
Google Scholar
[77] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304
Google Scholar
[78] Luo P, Lu Z, Zhu Z G, Li Y Z, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 106 031907
Google Scholar
[79] Pei C, Zhao R, Fang Y, Wu S, Cui Z, Sun B, Lan S, Luo P, Wang W, Feng T 2020 J. Alloys. Compd. 836 155506
Google Scholar
[80] Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823
Google Scholar
[81] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906
Google Scholar
[82] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903
Google Scholar
[83] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240
Google Scholar
[84] Luo P, Wolf S E, Govind S, Stephens R B, Kim D H, Chen C Y, Nguyen T, Wąsik P, Zhernenkov M, Mcclimon B, Fakhraai Z 2024 Nat. Mater. 23 688
Google Scholar
[85] Zhang A, Moore A R, Zhao H, Govind S, Wolf S E, Jin Y, Walsh P J, Riggleman R A, Fakhraai Z 2022 J. Chem. Phys. 156 244703
Google Scholar
[86] Dalal S S, Fakhraai Z, Ediger M D 2013 J. Phys. Chem. B 117 15415
Google Scholar
[87] Beasley M S, Bishop C, Kasting B J, Ediger M D 2019 J. Phys. Chem. Lett. 10 4069
Google Scholar
[88] Guo Y, Morozov A, Schneider D, Chung J W, Zhang C, Waldmann M, Yao N, Fytas G, Arnold C B, Priestley R D 2012 Nat. Mater. 11 337
Google Scholar
[89] Sun Q, Miskovic D M, Laws K, Kong H, Geng X, Ferry M 2020 Appl. Surf. Sci. 533 147453
Google Scholar
[90] Kearns K L, Still T, Fytas G, Ediger M D 2010 Adv. Mater. 22 39
Google Scholar
[91] Liu M, Cao C R, Lu Y M, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 31901
Google Scholar
[92] Ràfols-Ribé J, Will P A, Hänisch C, Gonzalez-Silveira M, Lenk S, Rodríguez-Viejo J, Reineke S 2018 Sci. Adv. 4 eaar8332
Google Scholar
[93] Yu H B, Tylinski M, Guiseppi-Elie A, Ediger M D, Richert R 2015 Phys. Rev. Lett. 115 185501
Google Scholar
[94] Rodríguez-Tinoco C, Ngai K L, Rams-Baron M, Rodríguez-Viejo J, Paluch M 2018 Phys. Chem. Chem. Phys. 20 21925
Google Scholar
[95] Rodríguez-Tinoco C, Rams-Baron M, Ngai K L, Jurkiewicz K, Rodríguez-Viejo J, Paluch M 2018 Phys. Chem. Chem. Phys. 20 3939
Google Scholar
[96] Kasting B J, Beasley M S, Guiseppi-Elie A, Richert R, Ediger M D 2019 J. Chem. Phys. 151 144502
Google Scholar
[97] Riechers B, Guiseppi-Elie A, Ediger M D, Richert R 2019 J. Chem. Phys. 150 214502
Google Scholar
[98] Scalliet C, Guiselin B, Berthier L 2022 Phys. Rev. X 12 041028
Google Scholar
[99] Sokolov A P, Rössler E, Kisliuk A, Quitmann D 1993 Phys. Rev. Lett. 71 2062
Google Scholar
[100] Wang L, Ninarello A, Guan P, Berthier L, Szamel G, Flenner E 2019 Nat. Commun. 10 26
Google Scholar
[101] Xu D, Zhang S, Tong H, Wang L, Xu N 2024 Nat. Commun. 15 1424
Google Scholar
[102] Mocanu F C, Berthier L, Ciarella S, Khomenko D, Reichman D R, Scalliet C, Zamponi F 2023 J. Chem. Phys. 158 014501
Google Scholar
[103] Li Y, Yu P, Bai H Y 2008 J. Appl. Phys. 104 013520
Google Scholar
[104] Pérez-Castañeda T, Jiménez-Riobóo R J, Ramos M A 2014 Phys. Rev. Lett. 112 165901
Google Scholar
[105] Gujral A, O’Hara K A, Toney M F, Chabinyc M L, Ediger M D 2015 Chem. Mater. 27 3341
Google Scholar
[106] Singh S, de Pablo J J 2011 J. Chem. Phys. 134 194903
Google Scholar
[107] Dawson K J, Zhu L, Yu L, Ediger M D 2011 J. Phys. Chem. B 115 455
Google Scholar
[108] Dalala S S, Walters D M, Lyubimov I, De Pablo J J, Ediger M D 2015 Proc. Natl. Acad. Sci. USA 112 4227
Google Scholar
[109] Bishop C, Thelen J L, Gann E, Toney M F, Yu L, DeLongchamp D M, Ediger M D 2019 Proc. Natl. Acad. Sci. USA 116 21421
Google Scholar
[110] Walters D M, Antony L, De Pablo J J, Ediger M D 2017 J. Phys. Chem. Lett. 8 3380
Google Scholar
[111] Bishop C, Bagchi K, Toney M F, Ediger M D 2022 J. Chem. Phys. 156 14504
Google Scholar
[112] Bishop C, Li Y, Toney M F, Yu L, Ediger M D 2020 J. Phys. Chem. B 124 2505
Google Scholar
[113] Fiori M E, Bagchi K, Toney M F, Ediger M D 2021 Proc. Natl. Acad. Sci. USA 118 e2111988118
Google Scholar
[114] Liu T, Exarhos A L, Alguire E C, Gao F, Salami-Ranjbaran E, Cheng K, Jia T, Subotnik J E, Walsh P J, Kikkawa J M, Fakhraai Z 2017 Phys. Rev. Lett. 119 095502
Google Scholar
[115] Ràfols-Ribé J, Dettori R, Ferrando-Villalba P, Gonzalez-Silveira M, Abad L, Lopeandía A F, Colombo L, Rodríguez-Viejo J 2018 Phys. Rev. Mater. 2 035603
Google Scholar
[116] Wolf S E, Fulco S, Zhang A, Zhao H, Walsh P J, Turner K T, Fakhraai Z 2022 J. Phys. Chem. Lett. 13 3360
Google Scholar
[117] Bishop C, Gujral A, Toney M F, Yu L, Ediger M D 2019 J. Phys. Chem. Lett. 10 3536
Google Scholar
[118] Bishop C, Chen Z, Toney M F, Bock H, Yu L, Ediger M D 2021 J. Phys. Chem. B 125 2761
Google Scholar
[119] To Make the Perfect Mirror, Physicists Confront the Mystery of Glass Wolchover N https://www.quantamagazine.org/to-make-the-perfect-mirror-physicists-confront-the-mystery-of-glass-20200402/ [2025-05-17]
[120] Sergio S L, Chigira A K, Oguni M 2015 J. Phys. Chem. B 119 4076
Google Scholar
[121] Moore A R, Huang G, Wolf S, Walsh P J, Fakhraai Z, Riggleman R A 2019 Proc. Natl. Acad. Sci. USA 116 5937
Google Scholar
[122] Laventure A, Gujral A, Lebel O, Pellerin C, Ediger M D 2017 J. Phys. Chem. B 121 2350
Google Scholar
[123] Tylinski M, Beasley M S, Chua Y Z, Schick C, Ediger M D 2017 J. Chem. Phys. 146 203317
Google Scholar
[124] Ellison C J, Torkelson J M 2003 Nat. Mater. 2 695
Google Scholar
[125] Ghanekarade A, Phan A D, Schweizer K S, Simmons D S 2023 Nat. Phys. 19 800
Google Scholar
[126] Paeng K, Swallen S F, Ediger M D 2011 J. Am. Chem. Soc. 133 8444
Google Scholar
[127] Lyubimov I, Antony L, Walters D M, Rodney D, Ediger M D, de Pablo J J 2015 J. Chem. Phys. 143 094502
Google Scholar
[128] Bagchi K, Jackson N E, Gujral A, Huang C, Toney M F, Yu L, De Pablo J J, Ediger M D 2019 J. Phys. Chem. Lett. 10 164
Google Scholar
[129] Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Lopeandía A F, Rodríguez-Viejo J 2015 Phys. Chem. Chem. Phys. 17 31195
Google Scholar
[130] Thoms E, Gabriel J P, Guiseppi-Elie A, Ediger M D, Richert R 2020 Soft Matter 16 10860
Google Scholar
[131] Sepúlveda A, Leon-Gutierrez E, Gonzalez-Silveira M, Rodríguez-Tinoco C, Clavaguera-Mora M T, Rodríguez-Viejo J 2011 Phys. Rev. Lett. 107 025901
Google Scholar
[132] Priestley R D, Ellison C J, Broadbelt L J, Torkelson J M 2005 Science 309 456
Google Scholar
[133] Pye J E, Rohald K A, Baker E A, Roth C B 2010 Macromolecules 43 8296
Google Scholar
[134] Kawana S, Jones R A L 2003 Eur. Phys. J. E 10 223
Google Scholar
[135] Frieberg B, Glynos E, Green P F 2012 Phys. Rev. Lett. 108 268304
Google Scholar
[136] Herminghaus S, Seemann R, Landfester K 2004 Phys. Rev. Lett. 93 017801
Google Scholar
[137] Mangalara J H, Marvin M D, Simmons D S 2016 J. Phys. Chem. B 120 4861
Google Scholar
[138] Jin Y, Zhang A, Wolf S E, Govind S, Moore A R, Zhernenkov M, Freychet G, Arabi Shamsabadi A, Fakhraai Z 2021 Proc. Natl. Acad. Sci. USA 118 e2100738118
Google Scholar
[139] Han Y, Roth C B 2021 J. Chem. Phys. 155 144901
Google Scholar
[140] Zhai Y, Luo P, Z Y 2021 Phys. Rev. B 103 085424
Google Scholar
[141] Chua Y Z, Ahrenberg M, Tylinski M, Ediger M D, Schick C 2015 J. Chem. Phys. 142 054506
Google Scholar
[142] Bagchi K, Deng C, Bishop C, Li Y, Jackson N E, Yu L, Toney M F, de Pablo J J, Ediger M D 2020 ACS Appl. Mater. Interfaces 12 26717
Google Scholar
[143] Zhang A, Jin Y, Liu T, Stephens R B, Fakhraai Z 2020 Proc. Natl. Acad. Sci. USA 117 24076
Google Scholar
[144] Roth C B 2024 Nat. Mater. 23 587
Google Scholar
[145] Yu H, Luo Y, Samwer K 2013 Adv. Mater. 25 5904
Google Scholar
[146] Nakayama H, Omori K, Ino-u-e K, Ishii K 2013 J. Phys. Chem. B 117 10311
Google Scholar
[147] Sepúlveda A, Tylinski M, Guiseppi-Elie A, Richert R, Ediger M D 2014 Phys. Rev. Lett. 113 045901
Google Scholar
[148] Zhang K, Li Y, Huang Q, Wang B, Zheng X, Ren Y, Yang W 2017 J. Phys. Chem. B 121 8188
Google Scholar
[149] Tong X, Zhang Y E, Shang B S, Zhang H P, Li Z, Zhang Y, Wang G, Liu Y H, Zhao Y, Zhang B, Ke H B, Zhou J, Bai H Y, Wang W H 2024 Nat. Mater. 23 1193
Google Scholar
-
图 1 非晶材料的表面动力学特性 (a)晶体表面可移动吸附原子和(b)非晶表面流动层示意图[28], 可流动部分以红色标示; (c) IMC液态及玻璃态的表面与体相扩散系数[29]; (d)非晶材料表面弛豫速率随温度的变化[30]; (e)低能离子辐照作用下非晶和晶体合金表面形貌[31]
Fig. 1. Surface dynamic characteristics of amorphous materials: Schematics of (a) mobile adatoms on a crystal surface and (b) the surface mobile layer of an amorphous material[28] with movable parts marked in red; (c) surface and bulk diffusion coefficients of IMC liquid and glass[29]; (d) surface relaxation rate of amorphous materials as a function of temperature[30]; (e) surface morphology of amorphous and crystalline alloys under low-energy ion irradiation[31].
图 2 超稳非晶的均匀结构与去玻璃化转变特性 (a)普通非晶合金STEM照片[62]; (b) 普通非晶整体协同弛豫方式去玻璃化转变示意图; (c) 超稳非晶合金STEM照片[62]; (d) 超稳非晶前沿生长方式去玻璃化转变示意图; (e) TPD超稳非晶薄膜在Tg + 3 K等温退火过程中由表面开始形成的过冷液体厚度随时间的变化
Fig. 2. Homogeneous structure and devitrification behavior of ultrastable amorphous materials: (a) STEM image of a conventional amorphous alloy[62]; (b) schematic illustration of the devitrification process via collective relaxation in a conventional amorphous material; (c) STEM image of an ultrastable amorphous alloy[62]; (d) schematic illustration of the devitrification process via front growth in an ultrastable amorphous material; (e) temporal evolution of the thickness of supercooled liquid layer initiated from the surface in an ultrastable TPD amorphous film during isothermal annealing at Tg + 3 K.
图 3 超稳非晶材料的SE和DSC表征 (a) 通过SE测量TPD薄膜的归一化厚度随温度变化曲线, 薄膜分别由298 K退火1周以及在Tdep = 298 K利用PVD制备[32]; (b) 根据DSC测量计算得出的TNB和IMC薄膜的焓值随温度变化曲线, 薄膜分别由PVD、液相冷却以及退火方式制备[52]
Fig. 3. SE and DSC characterization of ultrastable amorphous materials: (a) Normalized thickness vs. temperature for TPD films produced by annealing at 298 K for 1 week and by PVD at Tdep = 298 K, measured using SE[32]; (b) enthalpy vs. temperature, calculated from DSC measurements, for TNB and IMC films, produced by PVD, liquid cooling, and annealing[52].
图 5 超稳非晶材料的低能激发 (a) 甲苯超稳非晶和普通非晶的介电弛豫谱[93]; (b) IMC超稳非晶和普通非晶以及晶体的低温比热[58]; (c) TPD超稳非晶和普通非晶与晶体比热的差值[55]; (d) 1.1亿年前的琥珀的低温比热[104]
Fig. 5. Low-energy excitation of ultrastable amorphous materials: (a) Dielectric relaxation spectra of ultrastable and ordinary amorphous toluene[93]; (b) low-temperature specific heat of ultrastable, ordinary, and crystalline IMC[58]; (c) specific heat of ultrastable and ordinary amorphous TPD after subtracting its value for the crystalline state[55]; (d) low-temperature specific heat of a 110-million-year-old amber[104].
图 6 TPD超稳非晶的微观结构[105] (a) 不同衬底温度沉积的薄膜和液体冷却形成的薄膜的2D GIWAXS谱; (b) GIWAXS和SE测量的序参量随衬底温度的变化; (c) 层状结构衍射峰强度随衬底温度的变化
Fig. 6. Microstructure of ultrastable amorphous TPD[105]: (a) 2D GIWAXS spectra of films deposited at different substrate temperatures and prepared by liquid cooling; (b) order parameters measured by GIWAXS and SE vs. substrate temperature; (c) intensity of layering structure vs. substrate temperature.
图 7 非晶材料表面动力学梯度 (a) Tg随薄膜厚度的变化[33]; (b) 具有高运动能力的表面层厚度随温度的变化[126]; (c) 不同厚度薄膜的表面扩散系数(左轴)和平均α弛豫时间(右轴)的Arrhenius图[33]
Fig. 7. Dynamic gradient at the surface of amorphous materials: (a) Variation of Tg as a function of film thickness[33]; (b) thickness of surface layer with high mobility vs. temperature[126]; (c) Arrhenius plot of surface diffusion coefficient (left axis) and average α-relaxation time (right axis) of films with various thicknesses[33].
图 8 表面结构重排与速率-温度等效原理 (a) 沉积分子的取向序参量P1(z)随距离表面深度的演化[121]; (b) 在293 K下, 双折射率随基于平移因子为17 K/10倍频的速率-温度等效原理计算得到的有效沉积速率的变化[111]
Fig. 8. Surface structure rearrangement and rate–temperature superposition principle: (a) Evolution of the orientation order parameter P1(z) of the deposited molecules as a function of depth from the surface[121]; (b) birefringence vs. an effective deposition rate at 293 K calculated by applying the rate–temperature superposition principle using a shift factor of 17 K/decade[111].
图 9 PVD过程中介电损耗的变化[130], 沉积开始于t = 0 s, 终止于 t = 1158 s, 插图为沉积终止后, 随着时间的推移介电损耗的降低情况(以对数时间尺度表示), 变化情况以沉积初始阶段快速上升幅度的百分比来表示, 主图中的竖条对应数值为100%
Fig. 9. Evolution of dielectric dissipation during PVD process[130], the deposition starts at t = 0 s and ends at t = 1158 s, the inset shows the reduction of dissipation after the deposition had stopped on a logarithmic time scale, here, the change is shown as percentage of the initial fast rise, with 100% being indicated by the vertical bar in the main frame.
图 10 在Tdep < Tg (bulk)时, 表面介导的超稳非晶形成过程示意图, 棒状结构示意非球形分子的择优取向, 虚线表示Tg(local) = Tdep的位置, 薄膜可划分为从上至下的4个特征区域, 其主要的动力学行为分别为侧向表面扩散、平衡态弛豫、加速老化及动力学冻结的体相状态[25]
Fig. 10. Schematic illustration of surface-mediated formation of ultrastable amorphous materials at Tdep < Tg (bulk), the rod-like shapes illustrate the preferred orientation of nonspheroidal molecules. The dashed line denotes the position where Tg(local) = Tdep, the film can be divided into four possible regions from top to bottom, with the dynamics dominated by: lateral surface diffusion, equilibrium relaxation, accelerated aging, and kinetically arrested bulk state[25].
图 11 不同衬底温度和沉积速率条件下表面介导形成超稳非晶的动力学过程示意图 (a) 在一定沉积速率(Rdep)下密度变化与Tdep的关系; (b)—(e) 表面区域内的动力学过程随着Tdep和 Rdep的演变, 虚线表示Tg(local) = Tdep的位置[25]
Fig. 11. Schematic illustration of dynamical processes at play during surface-mediated formation of ultrastable amorphous materials at different Tdep and Rdep: (a) A representative sketch of the density change vs. Tdep at a constant deposition rate (Rdep); (b)–(e) evolution of the dynamic processes within surface region with Tdep and Rdep, dashed line denotes the position where Tg(local) = Tdep[25].
图 12 软衬底对超稳非晶的影响[84] (a) 在硅衬底和PDMS软衬底上沉积的薄膜相对密度随衬底温度和沉积速率的变化; (b) PVD薄膜相对密度随PDMS衬底弹性模量的变化; (c) 在硅衬底上沉积的薄膜的2D GIWAXS谱; (d) 在PDMS软衬底上沉积的薄膜的2D GIWAXS谱
Fig. 12. Effect of soft substrates on ultrastable amorphous materials[84]: (a) Relative density as a function of substrate temperature and deposition rate for films deposited on silicon substrates and soft PDMS substrates; (b) relative density of PVD films vs. elastic modulus of PDMS substrates; (c) 2D GIWAXS spectrum of the film deposited on silicon substrate; (d) 2D GIWAXS spectrum of the film deposited on soft PDMS substrate.
-
[1] Gravitational Waves Detected 100 Years After Einstein’s Prediction https://www.ligo.caltech.edu/news/ligo20160211 [2025-06-22]
[2] Humankind’s Most Important Material Main D https://www.theatlantic.com/technology/archive/2018/04/humankinds-most-important-material/557315/ [2025-06-22]
[3] Kennedy D, Norman C 2005 Science 309 75
Google Scholar
[4] Hodge I M 1995 Science 267 1945
Google Scholar
[5] Meng S Y, Hao Q, Wang B, Wang Y J, Pineda E, Qiao J C 2025 J. Appl. Phys. 137 055108
Google Scholar
[6] Luo P, Lu Z, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. B 93 104204
Google Scholar
[7] Luo P, Wen P, Bai H Y, Ruta B, Wang W H 2017 Phys. Rev. Lett. 118 225901
Google Scholar
[8] Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116 175901
Google Scholar
[9] 汪卫华, 罗鹏 2018 金属学报 54 1479
Google Scholar
Wang W, Luo P 2018 Acta Metall. Sin. 54 1479
Google Scholar
[10] Luo P, Li M X, Jiang H Y, Wen P, Bai H Y, Wang W H 2017 J. Appl. Phys. 121 135104
Google Scholar
[11] Ruta B, Chushkin Y, Monaco G, Cipelletti L, Pineda E, Bruna P, Giordano V M, Gonzalez-Silveira M 2012 Phys. Rev. Lett. 109 165701
Google Scholar
[12] Giordano V M, Ruta B 2016 Nat. Commun. 7 10344
Google Scholar
[13] Evenson Z, Ruta B, Hechler S, Stolpe M, Pineda E, Gallino I, Busch R 2015 Phys. Rev. Lett. 115 175701
Google Scholar
[14] Wang Z, Riechers B, Derlet P M, Maaß R 2024 Acta Mater. 267 119730
Google Scholar
[15] Riechers B, Das A, Dufresne E, Derlet P M, Maaß R 2024 Nat. Commun. 15 6595
Google Scholar
[16] Luo P, Li M X, Jiang H Y, Zhao R, Zontone F, Zeng Q S, Bai H Y, Ruta B, Wang W H 2020 Phys. Rev. B 102 054108
Google Scholar
[17] Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M 2017 Phys. Rev. Lett. 119 215501
Google Scholar
[18] Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965
Google Scholar
[19] Mauro J C, Uzun S S, Bras W, Sen S 2009 Phys. Rev. Lett. 102 155506
Google Scholar
[20] Müller C, Cole J H, Lisenfeld J 2019 Rep. Prog. Phys. 82 124501
Google Scholar
[21] Yang L, Vajente G, Fazio M, Ananyeva A, Billingsley G, Markosyan A, Bassiri R, Prasai K, Fejer M M, Chicoine M, Schiettekatte F, Menoni C S 2021 Sci. Adv. 7 eabh1117
Google Scholar
[22] Meißner A, Voigtländer T, Meißner S M, Kühn U, Schneider S, Shnirman A, Weiss G 2021 Phys. Rev. B 103 224209
Google Scholar
[23] Monroe C, Kim J 2013 Science 339 1169
Google Scholar
[24] Stephens R, Liu X 2021 Low Energy Excitations in Disordered Solids (World Scientific, Singapore
[25] Luo P, Fakhraai Z 2023 Annu. Rev. Phys. Chem. 74 361
Google Scholar
[26] Ediger M D 2017 J. Chem. Phys. 147 210901
Google Scholar
[27] Rodriguez-Tinoco C, Gonzalez-Silveira M, Ramos M A, Rodriguez-Viejo J 2022 Riv. Nuovo Cim. 45 325
Google Scholar
[28] Chen F, Lam C H, Tsui O K C 2014 Science 343 975
Google Scholar
[29] Zhu L, Brian C W, Swallen S F, Straus P T, Ediger M D, Yu L 2011 Phys. Rev. Lett. 106 256103
Google Scholar
[30] Luo P, Cao C R, Zhu F, Lü Y M, Liu Y H, Wen P, Bai H Y, Vaughan G, di Michiel M, Ruta B, Wang W H 2018 Nat. Commun. 9 1389
Google Scholar
[31] Luo P, Jaramillo C, Wallum A M, Liu Z T, Zhao R, Shen L Q, Zhai Y Q, Spear J C, Curreli D, Lyding J W, Gruebele M, Wang W H, Allain J P 2020 ACS Appl. Nano. Mater. 3 12025
Google Scholar
[32] Zhang Y, Fakhraai Z 2017 Phys. Rev. Lett. 118 066101
Google Scholar
[33] Zhang Y, Fakhraai Z 2017 Proc. Natl. Acad. Sci. USA 114 4915
Google Scholar
[34] Zhang Y, Glor E C, Li M, Liu T Y, Wahid K, Zhang W, Riggleman R A, Fakhraai Z 2016 J. Chem. Phys. 145 114502
Google Scholar
[35] Fakhraai Z, Forrest J A 2008 Science 319 600
Google Scholar
[36] Hao Z, Ghanekarade A, Zhu N, Randazzo K, Kawaguchi D, Tanaka K, Wang X, Simmons D S, Priestley R D, Zuo B 2021 Nature 596 372
Google Scholar
[37] Chai Y, Salez T, McGraw J D, Benzaquen M, Dalnoki-Veress K, Raphaël E, Forrest J A 2014 Science 343 994
Google Scholar
[38] Yang Z H, Fujii Y, Lee F K, Lam C H, Tsui O K C 2010 Science 328 1676
Google Scholar
[39] Wang B, Gao X Q, Su R, Guan P F 2024 Sci. China Phys. Mech. Astron. 67 236111
Google Scholar
[40] Bi Q L, Lü Y J, Wang W H 2018 Phys. Rev. Lett. 120 155501
Google Scholar
[41] Sun G, Saw S, Douglass I, Harrowell P 2017 Phys. Rev. Lett. 119 245501
Google Scholar
[42] Ashtekar S, Lyding J, Gruebele M 2012 Phys. Rev. Lett. 109 166103
Google Scholar
[43] Ashtekar S, Nguyen D, Zhao K, Lyding J, Wang W H, Gruebele M 2012 J. Chem. Phys. 137 141102
Google Scholar
[44] Cao C R, Lu Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 107 141606
Google Scholar
[45] Chen L, Cao C R, Shi J A, Lu Z, Sun Y T, Luo P, Gu L, Bai H Y, Pan M X, Wang W H 2017 Phys. Rev. Lett. 118 016101
Google Scholar
[46] Cao C R, Huang K Q, Shi J A, Zheng D N, Wang W H, Gu L, Bai H Y 2019 Nat. Commun. 10 1966
Google Scholar
[47] Ediger M D, Forrest J A 2014 Macromolecules 47 471
Google Scholar
[48] Tian H, Xu Q, Zhang H, Priestley R D, Zuo B 2022 Appl. Phys. Rev. 9 11316
Google Scholar
[49] Ediger M D, Gruebele M, Lubchenko V, Wolynes P G 2021 J. Phys. Chem. B 125 9052
Google Scholar
[50] Liang S Y, Hao Q, Xing G H, Wang B, Wang Y J, Pineda E, Qiao J C 2025 Acta Mater. 293 121125
Google Scholar
[51] Wang B, Gao X, Qiao J 2024 Rare Met. Mater. Eng. 53 70
Google Scholar
[52] Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353
Google Scholar
[53] Kearns K L, Swallen S F, Ediger M D, Wu T, Sun Y, Yu L 2008 J. Phys. Chem. B 112 4934
Google Scholar
[54] Raegen A N, Yin J, Zhou Q, Forrest J A 2020 Nat. Mater. 19 1110
Google Scholar
[55] Moratalla M, Rodríguez-López M, Rodríguez-Tinoco C, Rodríguez-Viejo J, Jiménez-Riobóo R J, Ramos M A 2023 Commun. Phys. 6 274
Google Scholar
[56] Ramos M A, Pérez-Castañeda T, Jiménez-Riobóo R J, Rodrígueziguez-Tinoco C, Rodrígueziguez-Viejo J 2015 Low Temp. Phys. 41 412
Google Scholar
[57] Khomenko D, Scalliet C, Berthier L, Reichman D R, Zamponi F 2020 Phys. Rev. Lett. 124 225901
Google Scholar
[58] Perez-Castaneda T, Rodriguez-Tinoco C, Rodriguez-Viejo J, Ramos M A 2014 Proc. Natl. Acad. Sci. USA 111 11275
Google Scholar
[59] Singh S, Ediger M D, de Pablo J J 2013 Nat. Mater. 12 139
Google Scholar
[60] Bagchi K, Ediger M D 2020 J. Phys. Chem. Lett. 11 6935
Google Scholar
[61] Ediger M D, de Pablo J, Yu L 2019 Acc. Chem. Res. 52 407
Google Scholar
[62] Luo P, Zhu F, Lü Y M, Lu Z, Shen L Q, Zhao R, Sun Y T, Vaughan G B M, di Michiel M, Ruta B, Bai H Y, Wang W H 2021 ACS Appl. Mater. Interfaces 13 40098
Google Scholar
[63] Walters D M, Richert R, Ediger M D 2015 J. Chem. Phys. 142 134504
Google Scholar
[64] Sepúlveda A, Swallen S F, Ediger M D 2013 J. Chem. Phys. 138 12A517
Google Scholar
[65] Dalal S S, Ediger M D 2015 J. Phys. Chem. B 119 3875
Google Scholar
[66] Swallen S F, Traynor K, McMahon R J, Ediger M D, Mates T E 2009 Phys. Rev. Lett. 102 065503
Google Scholar
[67] Parisi G, Sciortino F 2013 Nat. Mater. 12 94
Google Scholar
[68] Parisi G 2022 J. Phys. Complex. 3 040201
Google Scholar
[69] Ozawa M, Biroli G 2023 Phys. Rev. Lett. 130 138201
Google Scholar
[70] Hasyim M R, Mandadapu K K 2024 Proc. Natl. Acad. Sci. USA 121 e2322592121
Google Scholar
[71] Herrero C, Scalliet C, Ediger M D, Berthier L 2023 Proc. Natl. Acad. Sci. USA 120 e2220824120
Google Scholar
[72] Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Vila-Costa A, Martinez-Garcia J C, Rodríguez-Viejo J 2019 Phys. Rev. Lett. 123 155501
Google Scholar
[73] Ruiz-Ruiz M, Vila-Costa A, Bar T, Rodríguez-Tinoco C, Gonzalez-Silveira M, Plaza J A, Alcalá J, Fraxedas J, Rodriguez-Viejo J 2023 Nat. Phys. 19 1509
Google Scholar
[74] Herrero C, Ediger M D, Berthier L 2023 J. Chem. Phys. 159 114504
Google Scholar
[75] Vila-Costa A, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-López M, Rodriguez-Viejo J 2023 Nat. Phys. 19 114
Google Scholar
[76] Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501
Google Scholar
[77] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304
Google Scholar
[78] Luo P, Lu Z, Zhu Z G, Li Y Z, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 106 031907
Google Scholar
[79] Pei C, Zhao R, Fang Y, Wu S, Cui Z, Sun B, Lan S, Luo P, Wang W, Feng T 2020 J. Alloys. Compd. 836 155506
Google Scholar
[80] Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823
Google Scholar
[81] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906
Google Scholar
[82] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903
Google Scholar
[83] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240
Google Scholar
[84] Luo P, Wolf S E, Govind S, Stephens R B, Kim D H, Chen C Y, Nguyen T, Wąsik P, Zhernenkov M, Mcclimon B, Fakhraai Z 2024 Nat. Mater. 23 688
Google Scholar
[85] Zhang A, Moore A R, Zhao H, Govind S, Wolf S E, Jin Y, Walsh P J, Riggleman R A, Fakhraai Z 2022 J. Chem. Phys. 156 244703
Google Scholar
[86] Dalal S S, Fakhraai Z, Ediger M D 2013 J. Phys. Chem. B 117 15415
Google Scholar
[87] Beasley M S, Bishop C, Kasting B J, Ediger M D 2019 J. Phys. Chem. Lett. 10 4069
Google Scholar
[88] Guo Y, Morozov A, Schneider D, Chung J W, Zhang C, Waldmann M, Yao N, Fytas G, Arnold C B, Priestley R D 2012 Nat. Mater. 11 337
Google Scholar
[89] Sun Q, Miskovic D M, Laws K, Kong H, Geng X, Ferry M 2020 Appl. Surf. Sci. 533 147453
Google Scholar
[90] Kearns K L, Still T, Fytas G, Ediger M D 2010 Adv. Mater. 22 39
Google Scholar
[91] Liu M, Cao C R, Lu Y M, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 31901
Google Scholar
[92] Ràfols-Ribé J, Will P A, Hänisch C, Gonzalez-Silveira M, Lenk S, Rodríguez-Viejo J, Reineke S 2018 Sci. Adv. 4 eaar8332
Google Scholar
[93] Yu H B, Tylinski M, Guiseppi-Elie A, Ediger M D, Richert R 2015 Phys. Rev. Lett. 115 185501
Google Scholar
[94] Rodríguez-Tinoco C, Ngai K L, Rams-Baron M, Rodríguez-Viejo J, Paluch M 2018 Phys. Chem. Chem. Phys. 20 21925
Google Scholar
[95] Rodríguez-Tinoco C, Rams-Baron M, Ngai K L, Jurkiewicz K, Rodríguez-Viejo J, Paluch M 2018 Phys. Chem. Chem. Phys. 20 3939
Google Scholar
[96] Kasting B J, Beasley M S, Guiseppi-Elie A, Richert R, Ediger M D 2019 J. Chem. Phys. 151 144502
Google Scholar
[97] Riechers B, Guiseppi-Elie A, Ediger M D, Richert R 2019 J. Chem. Phys. 150 214502
Google Scholar
[98] Scalliet C, Guiselin B, Berthier L 2022 Phys. Rev. X 12 041028
Google Scholar
[99] Sokolov A P, Rössler E, Kisliuk A, Quitmann D 1993 Phys. Rev. Lett. 71 2062
Google Scholar
[100] Wang L, Ninarello A, Guan P, Berthier L, Szamel G, Flenner E 2019 Nat. Commun. 10 26
Google Scholar
[101] Xu D, Zhang S, Tong H, Wang L, Xu N 2024 Nat. Commun. 15 1424
Google Scholar
[102] Mocanu F C, Berthier L, Ciarella S, Khomenko D, Reichman D R, Scalliet C, Zamponi F 2023 J. Chem. Phys. 158 014501
Google Scholar
[103] Li Y, Yu P, Bai H Y 2008 J. Appl. Phys. 104 013520
Google Scholar
[104] Pérez-Castañeda T, Jiménez-Riobóo R J, Ramos M A 2014 Phys. Rev. Lett. 112 165901
Google Scholar
[105] Gujral A, O’Hara K A, Toney M F, Chabinyc M L, Ediger M D 2015 Chem. Mater. 27 3341
Google Scholar
[106] Singh S, de Pablo J J 2011 J. Chem. Phys. 134 194903
Google Scholar
[107] Dawson K J, Zhu L, Yu L, Ediger M D 2011 J. Phys. Chem. B 115 455
Google Scholar
[108] Dalala S S, Walters D M, Lyubimov I, De Pablo J J, Ediger M D 2015 Proc. Natl. Acad. Sci. USA 112 4227
Google Scholar
[109] Bishop C, Thelen J L, Gann E, Toney M F, Yu L, DeLongchamp D M, Ediger M D 2019 Proc. Natl. Acad. Sci. USA 116 21421
Google Scholar
[110] Walters D M, Antony L, De Pablo J J, Ediger M D 2017 J. Phys. Chem. Lett. 8 3380
Google Scholar
[111] Bishop C, Bagchi K, Toney M F, Ediger M D 2022 J. Chem. Phys. 156 14504
Google Scholar
[112] Bishop C, Li Y, Toney M F, Yu L, Ediger M D 2020 J. Phys. Chem. B 124 2505
Google Scholar
[113] Fiori M E, Bagchi K, Toney M F, Ediger M D 2021 Proc. Natl. Acad. Sci. USA 118 e2111988118
Google Scholar
[114] Liu T, Exarhos A L, Alguire E C, Gao F, Salami-Ranjbaran E, Cheng K, Jia T, Subotnik J E, Walsh P J, Kikkawa J M, Fakhraai Z 2017 Phys. Rev. Lett. 119 095502
Google Scholar
[115] Ràfols-Ribé J, Dettori R, Ferrando-Villalba P, Gonzalez-Silveira M, Abad L, Lopeandía A F, Colombo L, Rodríguez-Viejo J 2018 Phys. Rev. Mater. 2 035603
Google Scholar
[116] Wolf S E, Fulco S, Zhang A, Zhao H, Walsh P J, Turner K T, Fakhraai Z 2022 J. Phys. Chem. Lett. 13 3360
Google Scholar
[117] Bishop C, Gujral A, Toney M F, Yu L, Ediger M D 2019 J. Phys. Chem. Lett. 10 3536
Google Scholar
[118] Bishop C, Chen Z, Toney M F, Bock H, Yu L, Ediger M D 2021 J. Phys. Chem. B 125 2761
Google Scholar
[119] To Make the Perfect Mirror, Physicists Confront the Mystery of Glass Wolchover N https://www.quantamagazine.org/to-make-the-perfect-mirror-physicists-confront-the-mystery-of-glass-20200402/ [2025-05-17]
[120] Sergio S L, Chigira A K, Oguni M 2015 J. Phys. Chem. B 119 4076
Google Scholar
[121] Moore A R, Huang G, Wolf S, Walsh P J, Fakhraai Z, Riggleman R A 2019 Proc. Natl. Acad. Sci. USA 116 5937
Google Scholar
[122] Laventure A, Gujral A, Lebel O, Pellerin C, Ediger M D 2017 J. Phys. Chem. B 121 2350
Google Scholar
[123] Tylinski M, Beasley M S, Chua Y Z, Schick C, Ediger M D 2017 J. Chem. Phys. 146 203317
Google Scholar
[124] Ellison C J, Torkelson J M 2003 Nat. Mater. 2 695
Google Scholar
[125] Ghanekarade A, Phan A D, Schweizer K S, Simmons D S 2023 Nat. Phys. 19 800
Google Scholar
[126] Paeng K, Swallen S F, Ediger M D 2011 J. Am. Chem. Soc. 133 8444
Google Scholar
[127] Lyubimov I, Antony L, Walters D M, Rodney D, Ediger M D, de Pablo J J 2015 J. Chem. Phys. 143 094502
Google Scholar
[128] Bagchi K, Jackson N E, Gujral A, Huang C, Toney M F, Yu L, De Pablo J J, Ediger M D 2019 J. Phys. Chem. Lett. 10 164
Google Scholar
[129] Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Lopeandía A F, Rodríguez-Viejo J 2015 Phys. Chem. Chem. Phys. 17 31195
Google Scholar
[130] Thoms E, Gabriel J P, Guiseppi-Elie A, Ediger M D, Richert R 2020 Soft Matter 16 10860
Google Scholar
[131] Sepúlveda A, Leon-Gutierrez E, Gonzalez-Silveira M, Rodríguez-Tinoco C, Clavaguera-Mora M T, Rodríguez-Viejo J 2011 Phys. Rev. Lett. 107 025901
Google Scholar
[132] Priestley R D, Ellison C J, Broadbelt L J, Torkelson J M 2005 Science 309 456
Google Scholar
[133] Pye J E, Rohald K A, Baker E A, Roth C B 2010 Macromolecules 43 8296
Google Scholar
[134] Kawana S, Jones R A L 2003 Eur. Phys. J. E 10 223
Google Scholar
[135] Frieberg B, Glynos E, Green P F 2012 Phys. Rev. Lett. 108 268304
Google Scholar
[136] Herminghaus S, Seemann R, Landfester K 2004 Phys. Rev. Lett. 93 017801
Google Scholar
[137] Mangalara J H, Marvin M D, Simmons D S 2016 J. Phys. Chem. B 120 4861
Google Scholar
[138] Jin Y, Zhang A, Wolf S E, Govind S, Moore A R, Zhernenkov M, Freychet G, Arabi Shamsabadi A, Fakhraai Z 2021 Proc. Natl. Acad. Sci. USA 118 e2100738118
Google Scholar
[139] Han Y, Roth C B 2021 J. Chem. Phys. 155 144901
Google Scholar
[140] Zhai Y, Luo P, Z Y 2021 Phys. Rev. B 103 085424
Google Scholar
[141] Chua Y Z, Ahrenberg M, Tylinski M, Ediger M D, Schick C 2015 J. Chem. Phys. 142 054506
Google Scholar
[142] Bagchi K, Deng C, Bishop C, Li Y, Jackson N E, Yu L, Toney M F, de Pablo J J, Ediger M D 2020 ACS Appl. Mater. Interfaces 12 26717
Google Scholar
[143] Zhang A, Jin Y, Liu T, Stephens R B, Fakhraai Z 2020 Proc. Natl. Acad. Sci. USA 117 24076
Google Scholar
[144] Roth C B 2024 Nat. Mater. 23 587
Google Scholar
[145] Yu H, Luo Y, Samwer K 2013 Adv. Mater. 25 5904
Google Scholar
[146] Nakayama H, Omori K, Ino-u-e K, Ishii K 2013 J. Phys. Chem. B 117 10311
Google Scholar
[147] Sepúlveda A, Tylinski M, Guiseppi-Elie A, Richert R, Ediger M D 2014 Phys. Rev. Lett. 113 045901
Google Scholar
[148] Zhang K, Li Y, Huang Q, Wang B, Zheng X, Ren Y, Yang W 2017 J. Phys. Chem. B 121 8188
Google Scholar
[149] Tong X, Zhang Y E, Shang B S, Zhang H P, Li Z, Zhang Y, Wang G, Liu Y H, Zhao Y, Zhang B, Ke H B, Zhou J, Bai H Y, Wang W H 2024 Nat. Mater. 23 1193
Google Scholar
计量
- 文章访问数: 268
- PDF下载量: 19
- 被引次数: 0