-
层流-湍流的转捩问题是飞行器设计研制面临的重要气动难题。当飞行马赫数较高时,飞行器表面同时存在高温气体热化学反应与微孔隙效应,此时边界层失稳问题更加复杂,其机理认识尚不清楚。本文建立了同时考虑高温化学非平衡效应和表面微孔隙效应的线性稳定性分析方法,并针对高空H=25km、马赫数10、15和20的飞行工况,对比分析了化学非平衡效应、微孔隙效应以及两种效应共存时对流动稳定性的影响。研究发现,化学非平衡效应能够促进边界层模态失稳,微孔隙效应能够抑制第二模态失稳,前者作用强于后者,导致两者共存时整体上促进第二模态失稳。化学非平衡效应能够降低孔隙效应抑制第二模态对应的频率范围,造成在局部低频范围内化学非平衡效应可以增强微孔隙效应的抑制效果,而在高频范围内减弱其抑制效果,导致孔隙效应N值降低量整体上减小。此外,两种效应共存时马赫数变化对微孔隙效应抑制第二模态的能力影响不大。The transition from laminar to turbulent flow is one of the main aerodynamic challenges in aircraft design and development. When the flight Mach number is sufficiently high, the aircraft's surface experiences micropore effects and high-temperature gas thermochemical reactions. At the moment, boundary layer instability is a more complex problem, and its mechanism is still unclear. In this study, a linear stability analysis method is developed that considers both high-temperature chemical non-equilibrium processes and surface micropore effects. For flight conditions at high altitude (H=25 km) with Mach numbers 10, 15, and 20, the effects of micropore effects, chemical non-equilibrium effects, and their coexistence on flow stability are contrasted and investigated. It turns out that the chemical non-equilibrium effect can encourage the boundary layer's mode instability, while the micropore effect can restrain the second mode instability. The coexistence of the two tends to encourage the instability of the second mode because the former is heavier than the latter. The chemical non-equilibrium effect can reduce the frequency range corresponding to the second mode of pore effect inhibition, which results in the chemical non-equilibrium effect enhancing the inhibition effect of the micropore effect in the local low-frequency range and weakening its inhibition effect in the high-frequency range. This, in turn, causes a decrease in the corresponding N value variation by pore effect. Furthermore, when both effects are present, the micropore effect's capacity to inhibit the second mode is not significantly impacted by changes in Mach number.
-
Keywords:
- Boundary layer /
- Stability /
- chemical non-equilibrium /
- micropore effect
-
[1] Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017Acta Aerodyn. Sin. 35 311(in Chinese)[陈坚强,涂国华,张毅锋,徐国亮,袁先旭,陈诚2017空气动力学报35 311]
[2] Currie J G, Dickason A M 1988VA:Defense Technical Information Center
[3] Candler G V 2019Annu. Rev. Fluid Mech 51 379
[4] Bitter N P 2015Ph. D. Dissertation(California Institute of Technology)
[5] Malik M R 1991Phys. Fluids 3 803
[6] Stuckert G, Reed H L 1994AIAA J 32 1384
[7] Hudson M L, Chokani N, Candler G V 1997AIAA J 35 958
[8] Franko K, Maccormack R, Lele S 201040th Fluid Dynamics Conference and Exhibit Chicago, June 28-July 1, 2010
[9] Chen X L, Wang L, Fu S 2021Phys. Fluids 33 034132
[10] Zhao Z Y, Chen X L, Wang L, Fu S 2023Phys. Gases 8 35(in Chinese)[赵洲源,陈贤亮,王亮,符松2023气体物理8 35]
[11] Li C H, Wan B B, Tu G H, Hu W B, Chen J Q, Jiang C W 2024Acta Aerodyn. Sin. 42 12(in Chinese)[李晨辉,万兵兵,涂国华,胡伟波,陈坚强,蒋崇文2024空气动力学报42 12]
[12] Fernando M M, Beyak E S, Pinna F, Reed H L, Brussels B 2019Phys. Fluids 31 044101
[13] Mcbride B J, Zehe M J, Sanford G 2002NASA/TP 211556
[14] Magin T, Degrez G 2005J. Comput. Phys. 198 424
[15] Yos J M 1963Research& Advanced Development Division Avco Corporation Technical Memorandum
[16] Ramshaw J D 1993J. Non-Equilibrium Thermodyn. 18 12
[17] Chapman S, Cowling T G 1952Math. Gaz. 38 323
[18] Blottner F G, Johnson M, Ellis M 1971Sandia Laboratory
[19] Brokaw R S 1965J. Chem. Phys. 42 1140
[20] Gupta R N, Yos J M, Thompson R A 1990NASA Sti/recon Technical Report N
[21] Wan B B, Han Y F, Fan Y, Luo J S 2017J. Aerosp. Power 32 188(in Chinese)[万兵兵,韩宇峰,樊宇,罗纪生2017航空动力学报32 188]
[22] Park C, Jaffe R L, Partridge H 2001J. Thermophys. Heat Transf. 15 76
[23] Park C 1985AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14-17, 198585-0247
[24] PARK C 1993J. Thermophys. Heat Transf. 7 385
[25] Li C H, Wan B B, Chen J Q, Tu G H, Hu W B, Jiang C W 2024Int. J. Heat Mass Transfer 233126018
[26] Al-Jothery H K M, Albarody T M B, Yusoff P S M, Abdullah M A, Hussein A R 2020 IOP Conference Series:Materials Science and Engineering 863012003
[27] Malmuth N, Fedorov A, Shalaev V, Cole J, Khokhlov A, Hites M, Williams D 19982nd AIAA Theoretical Fluid Mechanics Meeting, Albuquerque, New Mexico, June 15-18, 1998
[28] Fedorov A, Malmuth N 2001 AIAA 39 605
[29] Zhao R, Liu T, Wen C Y, Zhu J, Cheng L 2018 AIAA 56 2942
[30] Wartemann V, Heinrich L, Sandham N D 200916th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, October 19-22, 2009 Session:HYTASP-1:Aerodynamics I
[31] Xu J K, Liu J X, Mughal S, Yu P X, Bai J Q 2020Phys. Fluids 32 044105
[32] Wang X Q, Zhong X L 2012Phys. Fluids 24 034105
[33] Rasheed A, Hornung H G, Fedorov A, Malmuth N D 2002 AIAA 40 481
[34] Lukashevich S V, Morozov S O, Shiplyuk A N 2016J. Appl. Mech. Tech. Phys. 57 873
[35] Guo Q L, Tu G H, Chen J Q, Yuan X X, Wan B B 2020J. Aerosp. Power 35 135(in Chinese)[郭启龙,涂国华,陈坚强,袁先旭,万兵兵2020航空动力学报35 135]
[36] Liu Y, Tu G H, Xiang X H, Li X H, Guo Q L, Wan B B 2022Acta Phys. Sin. 71 201(in Chinese)[刘勇,涂国华,向星皓,李晓虎,郭启龙,万兵兵2022 71 201]
[37] Gui Y T, Wang W Z, Zhao R, Zhao J Q, Wu J 2022AIAA 60 4453
[38] Liu X, Zhao R, Wen C Y, Yuan W 2024Acta Mech. 235 1109
[39] Wang X W, Zhong X L 201351st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, January 07-10, 20130827
[40] Wang X W 2018AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 20182088
[41] Uy K C K, Hao J, Zhao R, Wen C Y 2023Aerosp. Sci. Technol. 141 108520
[42] Walter G V, Charles H K, Teichmann T 1966Phys. Today 19 95
[43] Bird R B, Stewart W E, Lightfoot E N 20022nd Wiley international ed.(New York:J. Wiley)
[44] Wilke C R 1950J. Chem. Phys. 18 517
[45] Wan B B, Su C H, Chen J Q 2020AIAA 58 4047
[46] Zhao R, Wen C Y, Tian X D, Long T H, Yuan W 2018Int. J. Heat Mass Transfer 121 986
[47] Brès G A, Inkman M, Colonius T, Fedorov A 2013J. Fluid Mech 726 312
[48] Luedeke H, Sandham N D, Wartemann V 2012AIAA 50 1281
[49] Zhao R, Zhang X X, Wei H G, Wen C Y China Patent CN110135062B[2021-10-29] (in Chinese)[赵瑞,张新昕,魏昊功,温志涌中国专利CN110135062B[2021-10-29] ]
[50] Kline H L, Chang C L, Li F 2018Fluid Dynamics Conference Atlanta, Georgia, June 25-29, 20183699
[51] Fernando M M, Fabio P, Ethan S B, Paolo B, Helen L R 2018AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 20181824
[52] Zhao R, Yan H, Xi K, Wen C Y 2020Aeronaut. Sci. Technol. 31 104(in Chinese)[赵瑞,严昊,席柯,温志涌航空科学技术31 104]
计量
- 文章访问数: 40
- PDF下载量: 0
- 被引次数: 0