搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半赫斯勒热发电器件建模与性能表征方法

张雨谦 纽春萍 何海龙 任鸿睿 吴翊

引用本文:
Citation:

半赫斯勒热发电器件建模与性能表征方法

张雨谦, 纽春萍, 何海龙, 任鸿睿, 吴翊

Modeling and performance characterization methods of half-Heusler thermoelectric devices

ZHANG Yuqian, NIU Chunping, HE Hailong, REN Hongrui, WU Yi
cstr: 32037.14.aps.74.20250625
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 由于能够实现热能和电能的直接转换, 中高温区热电器件在深空探测、工业余废热回收等领域具有巨大的应用潜力. 半赫斯勒合金由于优异的机械性能、热稳定性和良好的热电表现, 成为中高温区热电器件制作的有潜力的候选材料. 然而与半赫斯勒热电材料的研究相比, 相应的器件研究还远远滞后, 制约了其大规模的工业应用. 本文首先制备了高性能P型和N型半赫斯勒合金, 采用自主设计的石墨模具成功钎焊组装了单对半赫斯勒热电器件. 之后采用有限元分析方法对单对器件进行三维仿真建模, 同时建立一维数值模型进行对比. 除此之外, 开发了一套自主集成的综合测试系统, 系统地表征了单对器件的输出功率、转换效率等关键热电性能. 两种模型仿真预测结果与实验测量数据高度一致, 在工作温差达到538 K时, 最大输出功率和最大转换效率分别为0.28 W和7.34%, 能够与目前报道的器件最佳性能相媲美. 本研究结果可以为半赫斯勒热电器件的实际制作、仿真建模和表征测量提供参考.
    Due to the ability to directly convert thermal energy into electrical energy, thermoelectric devices operating in the medium-to-high temperature range hold significant potential for applications such as deep space exploration and industrial waste heat recovery. Among candidate materials, half-Heusler alloys have emerged as promising options for device fabrication in this temperature range, owing to their excellent mechanical properties, thermal stability, and favorable thermoelectric performance. However, research on half-Heusler-based thermoelectric devices remains far behind study of the materials, which limits their large-scale industrial application. In this study, high-performance P-type Hf0.5Zr0.5CoSb0.8Sn0.2 and N-type Hf0.75Zr0.25NiSn0.99Sb0.01 half-Heusler alloys are firstly synthesized. Then the single-pair thermoelectric module is successfully brazed and assembled by using the graphite mold designed by ourselves. After that, three-dimensional (3D) finite element modeling and one-dimensional (1D) numerical modeling are conducted to simulate the module behaviors, and their results are highly consistent with experimental measurements, thereby validating the accuracy of the simulation models. Using the established simulation models, the influence of geometric parameters on module performance is investigated. The result shows that optimizing the leg height and cross-sectional area ratio is critical for achieving maximum conversion efficiency. Additionally, a self-integrated comprehensive testing system (Model: TE-X-MS) is developed to systematically characterize key thermoelectric properties, including output power and conversion efficiency. The fabricated device achieves a maximum output power of 0.28 W and a peak conversion efficiency of 7.34% at a temperature difference of 538 K, which is comparable to the best-performing devices reported to date. These results provide valuable reference for fabricating, modeling, and characterizing the half-Heusler thermoelectric devices in practical applications.
      通信作者: 何海龙, hhlong@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52177159)、中央高校基本科研业务费(批准号: xzy012023163)和电工材料电气绝缘全国重点实验室(批准号: EIPE23305, EIPE23132, EIPE24207)资助的课题.
      Corresponding author: HE Hailong, hhlong@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52177159), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. xzy012023163), and the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant Nos. EIPE23305, EIPE23132, EIPE24207).
    [1]

    王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先 2020 69 246801Google Scholar

    Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C, Wang W X 2020 Acta Phys. Sin. 69 246801Google Scholar

    [2]

    杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 72 228401Google Scholar

    Yang S G, Lin X, He J S, Zhai L J, Chen L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401Google Scholar

    [3]

    谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星 2023 72 124401Google Scholar

    Xie Z X, Yu X, Jia P Z, Chen X K, Deng Y X, Zhang Y, Zhou W X 2023 Acta Phys. Sin. 72 124401Google Scholar

    [4]

    He H L, Fang Z X, Niu C P, Wu Y, Rong M Z 2021 Energy Convers. Manag. 241 114314Google Scholar

    [5]

    Yu K, Wu Y, He H L, Niu C P, Rong M Z, Wu D, Liu S X, Zhang Y Q 2021 J. Alloys Compd. 885 161378Google Scholar

    [6]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2021 Chin. Phys. B 30 128401Google Scholar

    [7]

    许易, 许小言, 张薇, 欧阳滔, 唐超 2019 68 247202Google Scholar

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar

    [8]

    Lu J Y, Cui C F, Ouyang T, Li J, He C Y, Tang C, Zhong J X 2023 Chin. Phys. B 32 048401Google Scholar

    [9]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 Chin. Phys. B 29 118401Google Scholar

    [10]

    Ovik R, Long B D, Barma M C, Riaz M, Sabri M F M, Said S M, Saidur R 2016 Renewable Sustainable Energy Rev. 64 635Google Scholar

    [11]

    Eddine A N, Chalet D, Faure X, Faure X, Chessé P 2018 Energy 143 682Google Scholar

    [12]

    Haddad C, Périlhon C, Danlos A, François M X, Descombes G 2014 Energy Procedia 50 1056Google Scholar

    [13]

    Shen Z G, Tian L L, Liu X 2019 Energy Convers. Manag. 195 1138Google Scholar

    [14]

    Holgate T C, Bennett R, Hammel T, Caillat T, Keyser S, Sievers B 2015 J. Electron. Mater. 44 1814Google Scholar

    [15]

    柏胜强, 廖锦城, 夏绪贵, 陈立东 2020 深空探测学报 7 525Google Scholar

    Bai S Q, Liao J C, Xia X G, Chen L D 2020 J. Deep Space Explor. 7 525Google Scholar

    [16]

    Xiao Y, Zhao L D 2018 npj Quantum Mater. 3 55Google Scholar

    [17]

    Rogl G, Rogl P 2017 Curr. Opin. Green Sustainable Chem. 4 50Google Scholar

    [18]

    Huang L H, Zhang Q Y, Yuan B, Xiang L, Yan X, Ren Z F 2016 Mater. Res. Bull. 76 107Google Scholar

    [19]

    Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z, Dariel M P 2008 Scr. Mater. 58 251Google Scholar

    [20]

    Rull-Bravo M, Moure A, Fernández J F, Martín-González M 2015 RSC Adv. 5 41653Google Scholar

    [21]

    Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek A, Puchegger S, Soprunyuk V, Schranz W, Bauer E, Müller H, Zehetbauer M, Rogl P 2016 Acta Mater. 107 178Google Scholar

    [22]

    Silpawilawan W, Kurosaki K, Ohishi Y, Muta H, Yamanaka S 2017 J. Mater. Chem. C 5 6677Google Scholar

    [23]

    Poon S J 2018 Metals 8 989Google Scholar

    [24]

    He H L, Zhao Y B, Ren H R, Niu C P, Fang Z X, Wu Y, Rong M Z 2022 Appl. Therm. Eng. 215 118900Google Scholar

    [25]

    Nozariasbmarz A, Saparamadu U, Li W, Kang H B, Dettor C, Zhu H T, Poudel B, Priya S 2021 J. Power Sources 493 229695Google Scholar

    [26]

    Yu J J, Xing Y F, Hu C L, Huang Z J, Qiu Q Y, Wang C, Xia K Y, Wang Z Y, Bai S Q, Zhao X B, Chen L D, Zhu T J 2020 Adv. Energy Mater. 10 2000888Google Scholar

    [27]

    Xing Y F, Liu R H, Liao J C, Zhang Q H, Xia X G, Wang C, Huang H, Chu J, Gu M, Zhu T J, Zhu C X, Xu F F, Yao D X, Zeng Y P, Bai S Q, Uher C, Chen L D 2019 Energy Environ. Sci. 12 3390Google Scholar

    [28]

    苗圃, 韩屾, 高梓恒, 付晨光, 朱铁军 2022 中国材料进展 41 1029Google Scholar

    Miao P, Han S, Gao Z H, Fu C G, Zhu T J 2022 Mater. Chin. 41 1029Google Scholar

    [29]

    Moh'd A A N, Tashtoush B M, Jaradat A A 2015 Energy 90 1239Google Scholar

    [30]

    Chen W H, Huang S R, Wang X D, Wu P H, Lin Y L 2017 Energy 133 257Google Scholar

    [31]

    Meng F K, Chen L G, Sun F R 2016 Low-Carbon Technol. 11 375Google Scholar

    [32]

    Ouyang Z, Li D 2016 Sci. Rep. 6 24123Google Scholar

  • 图 1  (a) 半赫斯勒热电臂制作流程; (b) 合成材料的热电优值ZT; (c) 单对半赫斯勒热电器件焊接流程

    Fig. 1.  (a) Fabrication process of half-Heusler thermoelectric legs; (b) the ZT values of the synthesized materials; (c) the soldering process of the single-pair half-Heusler thermoelectric device.

    图 2  (a) P型和(b) N型半赫斯勒热电材料XRD图谱

    Fig. 2.  XRD patterns of (a) P-type and (b) N-type half-Heusler thermoelectric.

    图 3  单对器件三维建模图

    Fig. 3.  Schematic diagram of 3D modeling of single pair device.

    图 4  三维仿真得到的单对半赫斯勒器件温度分布图(a)和电势分布图(b)

    Fig. 4.  Temperature (a) and voltage (b) distribution diagram of single pair half-Heusler thermoelectric device obtained from 3D simulation.

    图 6  自制热电器件综合性能测试系统

    Fig. 6.  Self-made comprehensive performance testing system for thermoelectric devices.

    图 7  热端温度分别为300 ℃, 400 ℃, 500 ℃, 600 ℃时单对器件在不同电流负载下的特性变化 (a) 电压; (b) 输出功率; (c) 转换效率. (d) 本文不同温差下的最大转换效率与其他文献中报道的半赫斯勒器件的最大效率的对比

    Fig. 7.  Characteristic curves of a single pair of devices under different current loads when the hot end temperatures are 300 ℃, 400 ℃, 500 ℃ and 600 ℃ respectively: (a) Voltage; (b) output power; (c) conversion efficiency. (d) Comparison between the maximum conversion efficiency under different temperature differences in this work and other literatures.

    图 5  随热电臂高度和P型N型热电臂面积比(AP/AN)变化而变化的单对器件(a) 转换效率和(b) 输出功率

    Fig. 5.  Variation of conversion efficiency (a) and output power (b) of a single pair of devices with variation of thermoelectric arm height and P-type/N-type thermoelectric arm area ratio (AP/AN).

    表 1  单对器件建模参数

    Table 1.  Single pair device’s modeling parameters.

    参 数数 值
    陶瓷基板长度Ls/mm8
    陶瓷基板宽度Ws/mm3
    陶瓷基板厚度Ds/mm0.6
    覆铜层长度LCu/mm7
    覆铜层宽度WCu/mm3
    覆铜层厚度DCu/mm0.3
    P型热电臂宽度Wp/mm2.1
    P型热电臂高度Hp/mm6
    N型热电臂宽度Wn/mm2
    N型热电臂宽度Hn/mm6
    下载: 导出CSV

    表 2  热电材料物性参数

    Table 2.  Physical parameters of thermoelectric materials.

      参数 温度相关表达式
    P型 S/(μV·K–1) $-2.37478\times 10^{-13}T^3+2.00399\times 10^{-10} T^2 + 1.45119\times 10^{-7} T + 0.0000646145 $
    σ/(S⋅cm–1) $-6.40884\times 10^{-9}T^3+0.0000127913T^2 -0.00898933T + 6.35472 $
    κ/(W⋅m–1⋅K–1) $-0.000461149T^3 + 1.02189T^2 -825.929T +327500.0 $
    N型 S/(μV⋅K–1) $2.37915\times 10^{-13}T^3 -1.39249\times 10^{-10}T^2 -2.14638\times 10^{-7} T -0.0000648974 $
    σ/(S⋅cm–1) $-1.25489\times 10^{-8} T^3 + 0.0000285845T^2 -0.0223619T +10.403 $
    κ/(W⋅m–1⋅K–1) $0.0000727835T^3 + 0.0782446T^2 -271.589T +266246.0$
    下载: 导出CSV
    Baidu
  • [1]

    王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先 2020 69 246801Google Scholar

    Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C, Wang W X 2020 Acta Phys. Sin. 69 246801Google Scholar

    [2]

    杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 72 228401Google Scholar

    Yang S G, Lin X, He J S, Zhai L J, Chen L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401Google Scholar

    [3]

    谢忠祥, 喻霞, 贾聘真, 陈学坤, 邓元祥, 张勇, 周五星 2023 72 124401Google Scholar

    Xie Z X, Yu X, Jia P Z, Chen X K, Deng Y X, Zhang Y, Zhou W X 2023 Acta Phys. Sin. 72 124401Google Scholar

    [4]

    He H L, Fang Z X, Niu C P, Wu Y, Rong M Z 2021 Energy Convers. Manag. 241 114314Google Scholar

    [5]

    Yu K, Wu Y, He H L, Niu C P, Rong M Z, Wu D, Liu S X, Zhang Y Q 2021 J. Alloys Compd. 885 161378Google Scholar

    [6]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2021 Chin. Phys. B 30 128401Google Scholar

    [7]

    许易, 许小言, 张薇, 欧阳滔, 唐超 2019 68 247202Google Scholar

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar

    [8]

    Lu J Y, Cui C F, Ouyang T, Li J, He C Y, Tang C, Zhong J X 2023 Chin. Phys. B 32 048401Google Scholar

    [9]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 Chin. Phys. B 29 118401Google Scholar

    [10]

    Ovik R, Long B D, Barma M C, Riaz M, Sabri M F M, Said S M, Saidur R 2016 Renewable Sustainable Energy Rev. 64 635Google Scholar

    [11]

    Eddine A N, Chalet D, Faure X, Faure X, Chessé P 2018 Energy 143 682Google Scholar

    [12]

    Haddad C, Périlhon C, Danlos A, François M X, Descombes G 2014 Energy Procedia 50 1056Google Scholar

    [13]

    Shen Z G, Tian L L, Liu X 2019 Energy Convers. Manag. 195 1138Google Scholar

    [14]

    Holgate T C, Bennett R, Hammel T, Caillat T, Keyser S, Sievers B 2015 J. Electron. Mater. 44 1814Google Scholar

    [15]

    柏胜强, 廖锦城, 夏绪贵, 陈立东 2020 深空探测学报 7 525Google Scholar

    Bai S Q, Liao J C, Xia X G, Chen L D 2020 J. Deep Space Explor. 7 525Google Scholar

    [16]

    Xiao Y, Zhao L D 2018 npj Quantum Mater. 3 55Google Scholar

    [17]

    Rogl G, Rogl P 2017 Curr. Opin. Green Sustainable Chem. 4 50Google Scholar

    [18]

    Huang L H, Zhang Q Y, Yuan B, Xiang L, Yan X, Ren Z F 2016 Mater. Res. Bull. 76 107Google Scholar

    [19]

    Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z, Dariel M P 2008 Scr. Mater. 58 251Google Scholar

    [20]

    Rull-Bravo M, Moure A, Fernández J F, Martín-González M 2015 RSC Adv. 5 41653Google Scholar

    [21]

    Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek A, Puchegger S, Soprunyuk V, Schranz W, Bauer E, Müller H, Zehetbauer M, Rogl P 2016 Acta Mater. 107 178Google Scholar

    [22]

    Silpawilawan W, Kurosaki K, Ohishi Y, Muta H, Yamanaka S 2017 J. Mater. Chem. C 5 6677Google Scholar

    [23]

    Poon S J 2018 Metals 8 989Google Scholar

    [24]

    He H L, Zhao Y B, Ren H R, Niu C P, Fang Z X, Wu Y, Rong M Z 2022 Appl. Therm. Eng. 215 118900Google Scholar

    [25]

    Nozariasbmarz A, Saparamadu U, Li W, Kang H B, Dettor C, Zhu H T, Poudel B, Priya S 2021 J. Power Sources 493 229695Google Scholar

    [26]

    Yu J J, Xing Y F, Hu C L, Huang Z J, Qiu Q Y, Wang C, Xia K Y, Wang Z Y, Bai S Q, Zhao X B, Chen L D, Zhu T J 2020 Adv. Energy Mater. 10 2000888Google Scholar

    [27]

    Xing Y F, Liu R H, Liao J C, Zhang Q H, Xia X G, Wang C, Huang H, Chu J, Gu M, Zhu T J, Zhu C X, Xu F F, Yao D X, Zeng Y P, Bai S Q, Uher C, Chen L D 2019 Energy Environ. Sci. 12 3390Google Scholar

    [28]

    苗圃, 韩屾, 高梓恒, 付晨光, 朱铁军 2022 中国材料进展 41 1029Google Scholar

    Miao P, Han S, Gao Z H, Fu C G, Zhu T J 2022 Mater. Chin. 41 1029Google Scholar

    [29]

    Moh'd A A N, Tashtoush B M, Jaradat A A 2015 Energy 90 1239Google Scholar

    [30]

    Chen W H, Huang S R, Wang X D, Wu P H, Lin Y L 2017 Energy 133 257Google Scholar

    [31]

    Meng F K, Chen L G, Sun F R 2016 Low-Carbon Technol. 11 375Google Scholar

    [32]

    Ouyang Z, Li D 2016 Sci. Rep. 6 24123Google Scholar

  • [1] 李其柱, 范浩涵, 高梓恒, 南鹏飞, 朱铁军, 葛炳辉. 原位加热诱导Nb扩散引起Nb0.8CoSb有序度的转变.  , 2024, 73(11): 116401. doi: 10.7498/aps.73.20240325
    [2] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟.  , 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [3] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究.  , 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [4] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟.  , 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [5] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究.  , 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [6] 王哲, 王发展, 王欣, 何银花, 马姗, 吴振. Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟.  , 2014, 63(7): 076101. doi: 10.7498/aps.63.076101
    [7] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [8] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [9] 李芸, 孙华. 开口共振环型球状变形器的设计与模拟.  , 2011, 60(9): 094103. doi: 10.7498/aps.60.094103
    [10] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [11] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [12] 王晓南, 邸洪双, 梁冰洁, 夏小明. 热连轧粗轧调宽轧制过程边角部金属流动三维数值模拟.  , 2009, 58(13): 84-S88. doi: 10.7498/aps.58.84
    [13] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟.  , 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [14] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟.  , 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [15] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟.  , 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [16] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟.  , 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [17] 江慧丰, 张青川, 陈忠家, 伍小平. 退火铝合金中Portevin-Le Chatelier效应的数值模拟研究.  , 2006, 55(6): 2856-2859. doi: 10.7498/aps.55.2856
    [18] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟.  , 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [19] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟.  , 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟.  , 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  367
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-13
  • 修回日期:  2025-06-07
  • 上网日期:  2025-06-19
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map