搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大语言模型在电池科研全流程应用的测评与无机固态电解质综合数据库构建

吴思远 李泓

引用本文:
Citation:

大语言模型在电池科研全流程应用的测评与无机固态电解质综合数据库构建

吴思远, 李泓

Evaluation of the application of large language models in the entire process of battery research and development of a comprehensive database forinorganic solid electrolyte

WU Siyuan, LI Hong
cstr: 32037.14.aps.74.20250572
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 大语言模型的出现极大地推动了科学研究的进步. 以ChatGPT为代表的语言模型和DeepSeek R1为代表的推理模型, 为科研范式带来了显著变革. 尽管这些模型均为通用型, 但它们在电池领域, 尤其是固态电池的研究中, 展现出强大的泛化能力. 本研究系统性地筛选了2024年及之前重点期刊中的5309268篇文章, 精准提取了124021篇电池相关文献. 同时, 我们全面检索了欧洲专利局与美国专利局2024年及以前的申请与授权专利, 共计17559750篇, 从中筛选出125716篇电池相关专利. 利用这些文献与专利, 对语言模型的知识储备、实时学习、指令遵从和结构化输出能力进行了大量实验. 通过多维度的模型评估与分析发现: 当前的大语言模型在信息分类和数据提取等的精度基本达到了研究生水平, 语言模型在内容总结和趋势分析方面也展现出强大的能力. 同时, 我们也发现模型在极少数情况下可能出现数值幻觉问题. 而在处理电池领域海量数据时, 模型在工程应用方面仍存在优化空间. 我们根据模型的特点和以上测试结果, 利用模型提取了无机固态电解质材料数据, 包括离子电导率数据5970条、扩散系数数据387条、迁移势垒数据3094条, 此外还包括1000多条化学、电化学、力学等数据, 涵盖了无机固态电解质所涉及的几乎所有物理、化学、电化学性质, 这也意味着大语言模型对科研的应用已经从辅助科研转向主动促进科研发展阶段. 本文数据集可在中国科学院凝聚态物质科学数据中心查看, 网址https://cmpdc.iphy.ac.cn/literature/SSE.html (DOI: https://doi.org/10.57760/sciencedb.j00213.00172).
    The emergence of large language models has significantly advanced scientific research. Representative models such as ChatGPT and DeepSeek R1 have brought notable changes to the paradigm of scientific research. While these models are general-purpose, they have demonstrated strong generalization capabilities in the field of batteries, especially in solid-state battery research. In this study, we systematically screen 5309268 articles from key journals up to 2024, and accurately extract 124021 papers related to batteries. Additionally, we comprehensively search through 17559750 patent applications and granted patents from the European Patent Office and the United States Patent and Trademark Office up to 2024, identifying 125716 battery-related patents. Utilizing these extensive literature and patents, we conduct numerous experiments to evaluate the structured output capabilities of knowledge base, contextual learning, instruction adherence, and language models. Through multi-dimensional model evaluations and analyses, the following points are found. First, the model exhibits high accuracy in screening literature on inorganic solid-state electrolytes, equivalent to the level of a doctoral student in the relevant field. Based on 10604 data entries, the model demonstrates good recognition capabilities in identifying literature on in-situ polymerization/solidification technology. However, its understanding accuracy for this emerging technology is slightly lower than that for solid-state electrolytes, requiring further fine-tuning to improve accuracy. Second, through testing with 10604 data entries, the model achieves reliable accuracy in extracting inorganic ionic conductivity data. Third, based on solid-state lithium battery patents from four companies in South Korea and Japan over the past 20 years, this model proves effective in analyzing historical patent trends and conducting comparative analyses. Furthermore, the model-generated personalized literature reports based on the latest publications also show high accuracy. Fourth, by utilizing the iterative strategy of the model, we enable DeepSeek to engage in self-reflection thinking, thereby providing more comprehensive responses. The research results indicate that language models possess strong capabilities in content summarization and trend analysis. However, we also observe that the model may occasionally experience issues with numerical hallucinations. Additionally, while processing a large number of battery-related data, there is still room for optimization in engineering applications. According to the characteristics of the model and the above test results, we utilize the DeepSeek V3-0324 model to extract data on inorganic solid electrolyte materials, including 5970 ionic conductivity entries, 387 diffusion coefficient entries, and 3094 migration barrier entries. Additionally, it includes over 1000 data entries related to chemical, electrochemical, and mechanical properties, covering nearly all physical, chemical, and electrochemical properties related to inorganic solid electrolytes. This also means that the application of large language models in scientific research has shifted from auxiliary research to actively promoting its development. The datasets presented in this paper may be available at the website: https://cmpdc.iphy.ac.cn/literature/SSE.html (DOI: https://doi.org/10.57760/sciencedb.j00213.00172).
      通信作者: 李泓, hli@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB2502200)和国家自然科学基金(批准号: 2239304)资助的课题.
      Corresponding author: LI Hong, hli@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB2502200) and the National Natural Science Foundation of China (Grant No. 2239304).
    [1]

    ChatGPT Website https://chatgpt.com/

    [2]

    DeepSeek-AI 2025 arXiv: 2501.12948 [cs.CL]

    [3]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I 2017 arXiv: 1706.03762 [cs.CL]

    [4]

    Radford A, Narasimhan K, Salimans K, Sutskever I 2018 OpenAI Blog

    [5]

    Devlin J, Chang M W, Lee K, Toutanova K 2018 arXiv: 1810.04805 [cs.CL]

    [6]

    Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I 2019 OpenAI Blog

    [7]

    Brown T B, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D M, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D 2020 arXiv: 2005.14165 [cs.CL]

    [8]

    Wei J, Wang X Z, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E, Le Q, Zhou D 2022 arXiv: 2201.11903 [cs.CL]

    [9]

    OpenAI o1 Hub https://openai.com/zh-Hans-CN/o1/

    OpenAI o1 Hub https://openai.com/zh-Hans-CN/o1/

    [10]

    Yang A, Yang B S, Hui B Y, Zheng B, Yu B W, Zhou C, Li C P, Li C Y, Liu D Y H, Huang F, Dong G T, Wei H R, Lin H, Tang J L, Wang J L, Yang J, Tu J H, Zhang J W, Ma J X, Xu J, Zhou J R, Bai J Z, He J Z, Lin J Y, Dang K, Lu K M, Chen K Q, Yang K X, Li M, Xue M F, Ni N, Zhang P, Wang P, Peng R, Men R, Gao R Z, Lin R J, Wang S J, Bai S, Tan S N, Zhu T H, Li T H, Liu T Y, Ge W B, Deng X D, Zhou X H, Ren X Z, Zhang X Y, Wei X P, Ren X C, Fan Y, Yao Y, Zhang Y C, Wan Y, Chu Y F, Cui Z Y, Zhang Z Y, Fan Z H 2024 arXiv: 2407.10671 [cs.CL]

    [11]

    Zeng A H, Xu B, Wang B W, Zhang C H, Yin D, Zhang D, Rojas D, Feng G Y, Zhao H L, Lai H Y, Yu H, Wang H N, Sun J D, Zhang J J, Cheng J L, Gui J Y, Tang J, Zhang J, Sun J Y, Li J Z, Zhao L, Wu L D, Zhong L C, Liu M D, Huang M L, Zhang P, Zheng Q K, Lu R, Duan S Q, Zhang S D, Cao S L, Yang S X, Tam W L, Zhao W Y, Liu X, Xia X, Zhang X H, Gu X T, Lü X, Liu X H, Liu X Y, Yang X Y, Song X X, Zhang X K, An Y F, Xu Y F, Niu Y L, Yang Y T, Li Y Y, Bai Y S, Dong Y X, Qi Z H, Wang Z Y, Yang Z, Du Z X, Hou Z Y, Wang Z H 2024 arXiv: 2406.12793 [cs.CL]

    [12]

    Gemini 2.5 Pro Gemini官网 https://gemini.google.com/app

    [13]

    Chen J L, Xiao S T, Zhang P T, Luo K, Lian D F, Liu Z 2024 arXiv: 2402.03216 [cs.CL]

    [14]

    MatElab平台https://in.iphy.ac.cn/eln/#/recusertype

    [15]

    Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Küttler H, Lewis M, Yih W T, Rocktäschel T, Riedel S, Kiela D 2000 arXiv: 2005.11401 [cs.CL]

    [16]

    吴思远, 王宇琦, 肖睿娟, 陈立泉, 2020 69 226104Google Scholar

    Wu S Y, Wang Y Q, Xiao R J, Chen L Q 2020 Acta Phys. Sin. 69 226104Google Scholar

    [17]

    离子输运数据库 http://e01.iphy.ac.cn/bmd

    [18]

    Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 5 14227Google Scholar

    [19]

    He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S Q 2020 Sci. Data 7 151Google Scholar

    [20]

    Yang F L, dos Santos E C, Jia X, Sato R, Kisu K, Hashimoto Y, Orimo S, Li H 2024 Nano Mater. Sci. 6 256Google Scholar

    [21]

    Hargreaves C J, Gaultois M W, Daniels L M, Watts E J, Kurlin V A, Moran M, Dang Y, Morris R, Axandra M, Thompson K, Wright M A, Beluvalli-Eshwarappa P, Blanc F, Collins C M, Crawford C A, Duff B B, Evans J, Gamon J, Han G P, Leube B T, Niu H J, Perez A J, Robinson A, Rogan O, Sharp P A, Shoko E, Sonni M, Thomas W J, Vasylenko A, Wang L, Rosseinsky M J, Dyer M S 2023 npj Comput. Mater. 9 9Google Scholar

    [22]

    Wu S Y, Zhu T N, Tu S J, Xiao R J, Yuan J, Wu Q S, Li H, Weng H M 2024 Chin. Phys. B 33 050704Google Scholar

    [23]

    无机固态电解质材料数据库https://cmpdc.iphy.ac.cn/literature/SSE.html

    [24]

    Zhang Y, Xie M X, Zhang W, Yan J L, Shao G Q 2020 Mater. Lett. 266 127508Google Scholar

    [25]

    Li Y X, Daikuhara S, Hori S, Sun X Y, Suzuki K, Hirayama M, Kanno R 2020 Chem. Mater. 32 8860Google Scholar

    [26]

    Xu R C, Wu Z, Zhang S Z, Wang X L, Xia Y, Xia X H, Huang X H, Tu J P 2017 Chem. Eur. J. 23 13950Google Scholar

    [27]

    Li X L, Peng W X, Tian R Z, Song D W, Wang Z Y, Zhang H Z, Zhu L Y, Zhang L Q 2020 Electrochim. Acta 363 137185Google Scholar

    [28]

    Wu F, Fitzhugh W, Ye L H, Ning J X, Li X 2018 Nat. Commun. 9 4037Google Scholar

  • 图 1  本工作主要考核目标(左侧)与设计的实验(右侧)

    Fig. 1.  The main assessment objectives (left) and the designed experiment (right) of this work.

    图 2  DeepSeek R1, ChatGPT o3 min和Gemini 2.0对同样内容的总结比较

    Fig. 2.  Comparison of summaries generated by DeepSeek R1, ChatGPT o3 min, and Gemini 2.0 on the same content.

    图 3  DeepSeek R1分析日韩4家企业过去20年固态电池专利

    Fig. 3.  Analysis of solid-state battery patents from four Japanese and South Korean companies over the past 20 years by DeepSeek R1

    图 4  DeepSeek R1分析每日电池文献(左图)和电池新闻(右图)

    Fig. 4.  Analysis of solid-state battery literatures (left subfigure) and news (right subfigure) by DeepSeek R1.

    图 5  DeepSeek R1 70B未挂载知识库(左图)和挂载知识库(右图)在回答同一问题的差异

    Fig. 5.  DeepSeek R1 70B without knowledge base mounted (left) and with knowledge base mounted (right) showing differences in responses to the same question.

    图 6  DeepSeek R1 70B Deep Research流程(左图)和优化后输出(右图)

    Fig. 6.  Workflow of deep research of DeepSeek R1 70B (left) and answer by it (right).

    图 7  无机固态电解质数据库构建流程

    Fig. 7.  Workflow of constructing inorganic solid electrolyte database.

    表 1  无机固态电解质文献分类准确性

    Table 1.  Accuracy of literature classification for inorganic solid electrolytes.

    MatElab模型 DeepSeek R1 QwQ 32B
    精确性 0.859 0.883 0.781
    召回率 0.850 0.823 0.827
    F1 0.854 0.854 0.801
    下载: 导出CSV

    表 2  原位固化技术文献分类准确性

    Table 2.  Accuracy of literature classification for in-situ solidification technology.

    微调后的Qwen2-7B-Instruct DeepSeek R1
    精确性 0.406 0.950
    召回率 0.833 0.653
    F1 0.576 0.774
    下载: 导出CSV
    Baidu
  • [1]

    ChatGPT Website https://chatgpt.com/

    [2]

    DeepSeek-AI 2025 arXiv: 2501.12948 [cs.CL]

    [3]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I 2017 arXiv: 1706.03762 [cs.CL]

    [4]

    Radford A, Narasimhan K, Salimans K, Sutskever I 2018 OpenAI Blog

    [5]

    Devlin J, Chang M W, Lee K, Toutanova K 2018 arXiv: 1810.04805 [cs.CL]

    [6]

    Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I 2019 OpenAI Blog

    [7]

    Brown T B, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D M, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D 2020 arXiv: 2005.14165 [cs.CL]

    [8]

    Wei J, Wang X Z, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E, Le Q, Zhou D 2022 arXiv: 2201.11903 [cs.CL]

    [9]

    OpenAI o1 Hub https://openai.com/zh-Hans-CN/o1/

    OpenAI o1 Hub https://openai.com/zh-Hans-CN/o1/

    [10]

    Yang A, Yang B S, Hui B Y, Zheng B, Yu B W, Zhou C, Li C P, Li C Y, Liu D Y H, Huang F, Dong G T, Wei H R, Lin H, Tang J L, Wang J L, Yang J, Tu J H, Zhang J W, Ma J X, Xu J, Zhou J R, Bai J Z, He J Z, Lin J Y, Dang K, Lu K M, Chen K Q, Yang K X, Li M, Xue M F, Ni N, Zhang P, Wang P, Peng R, Men R, Gao R Z, Lin R J, Wang S J, Bai S, Tan S N, Zhu T H, Li T H, Liu T Y, Ge W B, Deng X D, Zhou X H, Ren X Z, Zhang X Y, Wei X P, Ren X C, Fan Y, Yao Y, Zhang Y C, Wan Y, Chu Y F, Cui Z Y, Zhang Z Y, Fan Z H 2024 arXiv: 2407.10671 [cs.CL]

    [11]

    Zeng A H, Xu B, Wang B W, Zhang C H, Yin D, Zhang D, Rojas D, Feng G Y, Zhao H L, Lai H Y, Yu H, Wang H N, Sun J D, Zhang J J, Cheng J L, Gui J Y, Tang J, Zhang J, Sun J Y, Li J Z, Zhao L, Wu L D, Zhong L C, Liu M D, Huang M L, Zhang P, Zheng Q K, Lu R, Duan S Q, Zhang S D, Cao S L, Yang S X, Tam W L, Zhao W Y, Liu X, Xia X, Zhang X H, Gu X T, Lü X, Liu X H, Liu X Y, Yang X Y, Song X X, Zhang X K, An Y F, Xu Y F, Niu Y L, Yang Y T, Li Y Y, Bai Y S, Dong Y X, Qi Z H, Wang Z Y, Yang Z, Du Z X, Hou Z Y, Wang Z H 2024 arXiv: 2406.12793 [cs.CL]

    [12]

    Gemini 2.5 Pro Gemini官网 https://gemini.google.com/app

    [13]

    Chen J L, Xiao S T, Zhang P T, Luo K, Lian D F, Liu Z 2024 arXiv: 2402.03216 [cs.CL]

    [14]

    MatElab平台https://in.iphy.ac.cn/eln/#/recusertype

    [15]

    Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Küttler H, Lewis M, Yih W T, Rocktäschel T, Riedel S, Kiela D 2000 arXiv: 2005.11401 [cs.CL]

    [16]

    吴思远, 王宇琦, 肖睿娟, 陈立泉, 2020 69 226104Google Scholar

    Wu S Y, Wang Y Q, Xiao R J, Chen L Q 2020 Acta Phys. Sin. 69 226104Google Scholar

    [17]

    离子输运数据库 http://e01.iphy.ac.cn/bmd

    [18]

    Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 5 14227Google Scholar

    [19]

    He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S Q 2020 Sci. Data 7 151Google Scholar

    [20]

    Yang F L, dos Santos E C, Jia X, Sato R, Kisu K, Hashimoto Y, Orimo S, Li H 2024 Nano Mater. Sci. 6 256Google Scholar

    [21]

    Hargreaves C J, Gaultois M W, Daniels L M, Watts E J, Kurlin V A, Moran M, Dang Y, Morris R, Axandra M, Thompson K, Wright M A, Beluvalli-Eshwarappa P, Blanc F, Collins C M, Crawford C A, Duff B B, Evans J, Gamon J, Han G P, Leube B T, Niu H J, Perez A J, Robinson A, Rogan O, Sharp P A, Shoko E, Sonni M, Thomas W J, Vasylenko A, Wang L, Rosseinsky M J, Dyer M S 2023 npj Comput. Mater. 9 9Google Scholar

    [22]

    Wu S Y, Zhu T N, Tu S J, Xiao R J, Yuan J, Wu Q S, Li H, Weng H M 2024 Chin. Phys. B 33 050704Google Scholar

    [23]

    无机固态电解质材料数据库https://cmpdc.iphy.ac.cn/literature/SSE.html

    [24]

    Zhang Y, Xie M X, Zhang W, Yan J L, Shao G Q 2020 Mater. Lett. 266 127508Google Scholar

    [25]

    Li Y X, Daikuhara S, Hori S, Sun X Y, Suzuki K, Hirayama M, Kanno R 2020 Chem. Mater. 32 8860Google Scholar

    [26]

    Xu R C, Wu Z, Zhang S Z, Wang X L, Xia Y, Xia X H, Huang X H, Tu J P 2017 Chem. Eur. J. 23 13950Google Scholar

    [27]

    Li X L, Peng W X, Tian R Z, Song D W, Wang Z Y, Zhang H Z, Zhu L Y, Zhang L Q 2020 Electrochim. Acta 363 137185Google Scholar

    [28]

    Wu F, Fitzhugh W, Ye L H, Ning J X, Li X 2018 Nat. Commun. 9 4037Google Scholar

  • [1] 曾交龙, 高城, 袁建民. 低密度铝铁金等离子体辐射不透明度数据库.  , 2025, 74(12): 125202. doi: 10.7498/aps.74.20250301
    [2] 黄钰丹, 夏琬钧, 杜俊梅, 蒋渝, 汪鑫, 陈元正, 王红艳, 赵纪军, 郭春生. 大语言模型加速材料设计—从知识挖掘到智能设计的全链条赋能.  , 2025, 74(18): . doi: 10.7498/aps.74.20250497
    [3] 白靖宜, 黄桥高, 高鹏骋, 问昕, 褚勇. 基于去噪概率扩散模型的蝠鲼流场智能化预测.  , 2025, 74(10): 104701. doi: 10.7498/aps.74.20241499
    [4] 李晶宇, 杨晶, 王浩, 李雪鹏, 宁梓豪, 高宏伟, 王小军, 赵天卓, 樊仲维, 许祖彦. 基于人工智能算法的宽稳区大模场纳秒激光产生.  , 2025, 74(16): 164206. doi: 10.7498/aps.74.20250519
    [5] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统.  , 2025, 74(12): 120301. doi: 10.7498/aps.74.20250322
    [6] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展.  , 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [7] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述.  , 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [8] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究.  , 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [9] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展.  , 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [10] 沈培鑫, 蒋文杰, 李炜康, 鲁智德, 邓东灵. 量子人工智能中的对抗学习.  , 2021, 70(14): 140302. doi: 10.7498/aps.70.20210789
    [11] 固态电池中的物理问题专题编者按.  , 2020, 69(22): 220101. doi: 10.7498/aps.69.220101
    [12] 吴思远, 王宇琦, 肖睿娟, 陈立泉. 电池材料数据库的发展与应用.  , 2020, 69(22): 226104. doi: 10.7498/aps.69.20201542
    [13] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测.  , 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [14] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能.  , 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [15] 刘玉龙, 辛明杨, 丛丽娜, 谢海明. 聚氧乙烯基聚合物固态电池的界面研究进展.  , 2020, 69(22): 228202. doi: 10.7498/aps.69.20201588
    [16] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略.  , 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [17] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征.  , 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [18] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题.  , 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [19] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展.  , 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [20] 苏佳杭, 伍钧, 胡思得. 基于数据库进行乏燃料鉴别的多元统计分析研究.  , 2019, 68(9): 090204. doi: 10.7498/aps.68.20190107
计量
  • 文章访问数:  490
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-06-20
  • 上网日期:  2025-06-23
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map