搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子集成的量子密钥分发和量子随机数生成器近期研究进

于景春 芦文斌 陈宾 杜永强 谢锋 李蔚 韦克金

引用本文:
Citation:

光子集成的量子密钥分发和量子随机数生成器近期研究进

于景春, 芦文斌, 陈宾, 杜永强, 谢锋, 李蔚, 韦克金

Recent progress on photon-integrated quantum key distribution and quantum random number generator

YU Jingchun, LU Wenbin, CHEN Bin, DU Yongqiang, XIE Feng, LI Wei, WEI Kejin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 量子密钥分发凭借其信息理论层面上的无条件安全性及窃听可探测性等独特优势,在金融、政务、国防等安全敏感领域展现出广阔的应用前景.集成光子学技术通过将传统量子密钥分发系统的核心器件高密度集成于单一芯片,显著提升了系统的小型化程度、成本效益与长期稳定性,是实现量子密钥分发规模化工程应用的核心技术路径.本文系统综述了近期基于不同材料平台与架构的光子集成量子密钥分发实验进展,以及用于生成真随机数的集成量子随机数生成器的最新研究动态.该综述旨在为未来芯片化量子保密通信技术的发展提供技术路线指引.
    Quantum key distribution (QKD) relies on the fundamental principles of quantum mechanics and can theoretically achieve unconditionally secure communication that is provable by information theory. Quantum random number generators, on the other hand, utilize the inherent randomness of quantum phenomena and are capable of generating a truly random entropy source that is unpredictable, unbiased and unrepeatable. These two technologies are crucial for building highly trustworthy and secure communication systems resistant to quantum attacks. However, their large-scale deployment still faces challenges such as system performance optimization, cost control and scale production.
    Relying on wafer-level fabrication platforms and micro-nanometer processing, integrated photonics technology integrates the core devices of traditional QKD systems (e.g., light source, modulator, and detector) in a single chip at high density. It significantly improves the miniaturization, operational stability and cost-effectiveness of the system, and enhances the intrinsic security, and becomes a key enabling platform to drive QKD and QRNG from laboratory to engineering applications.
    In this paper, we systematically review the recent breakthroughs of photonic integrated QKD based on different material platforms (SOI/InP/TFLN/Si3N4) in terms of core metrics, such as transmission distance and key rate, as well as the significant breakthroughs of integrated QRNG in terms of random number generation rate and system integration. Finally, the future development direction of this field is discussed and outlooked from the four dimensions of practical security of QKD systems, on-chip implementation of cutting-edge QKD protocols, practical fully-integrated QKD systems, and synergistic optimization of high performance and high integration of integrated QRNG.
  • [1]

    Proctor T, Young K, Baczewski A D, Blume Kohout R 2025 Nat. Rev. Phys. 7105

    [2]

    Fauseweh B 2024 Nat. Commun. 152123

    [3]

    Proctor T, Rudinger K, Young K, Nielsen E, Blume Kohout R 2022 Nat. Phys. 1875

    [4]

    Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19387

    [5]

    Fujisaki E, Okamoto T 199919th Annual International Cryptology Conference Santa Barbara, California, USA, August 15-19, 1999 p537

    [6]

    Simmons G J 1979 ACM Comput. Surv. 11305

    [7]

    Akter M S, Rodriguez C J, Shahriar H, Cuzzocrea A, Wu F 2023 IEEE International Conference on Big Data (BigData) Sorrento, Italy, December 15-18, 2023 p5408

    [8]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10-12, 1984 p175

    [9]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol 53

    [10]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photonics 17416

    [11]

    Li Y, Cai W Q, Ren J G, Wang C Z, Yang M, Zhang L, Wu H Y, Chang L, Wu J C, Jin B, Xue H J, Li X J, Liu H, Yu G W, Tao X Y, Chen T, Liu C F, Luo W B, Zhou J, Yong H L, Li Y H, Li F Z, Jiang C, Chen H Z, Wu C, Tong X H, Xie S J, Zhou F, Liu W Y, Ismail Y, Petruccione F, Liu N L, Li L, Xu F, Cao Y, Yin J, Shu R, Wang X B, Zhang Q, Wang J Y, Liao S K, Peng C Z, Pan J W 2025 Nature 64047

    [12]

    Li W, Zhang L K, Lu Y C, Li Z P, Jiang C, Liu Y, Huang J, Li H, Wang Z, Wang X B, Zhang Q, You L X, Xu F H, Pan J W 2023 Phys. Rev. Lett. 130250802

    [13]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L X, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130210801

    [14]

    Zhang L K, Li W, Pan J W, Lu Y C, Li W W, Li Z P, Huang Y Z, Ma X F, Xu F H, Pan J W 2025 Phys. Rev. X 15021037

    [15]

    Diamanti E, Lo H K, Qi B, Yuan Z L 2016 npj Quantum Inf. 216025

    [16]

    Liu Q, Huang Y M, Du Y Q, Zhao Z G, Geng M M, Zhang Z R, Wei K J 2022 Entropy 241334

    [17]

    Gabriel C, Wittmann C, Sych D, Dong R F, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4711

    [18]

    Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90043105

    [19]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 711675

    [20]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83023820

    [21]

    Wayne M A, Kwiat P G 2010 Opt. Express 189351

    [22]

    Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98171105

    [23]

    Guo Y, Cai Q, Li P, Jia Z W, Xu B J, Zhang Q W, Zhang Y M, Zhang R N, Gao Z S, Shore K A, Wang Y C 2021 APL Photonics 6066105

    [24]

    Wei S H, Yang J, Fan F, Huang W, Li D S, Xu B J 2017 Rev. Sci. Instrum. 88123115

    [25]

    Du Y Q, Hua X, Zhao Z G, Sun X R, Zhang Z R, Xiao X, Wei K J 2025 Commun. Phys. 89

    [26]

    Marangon D G, Smith P R, Walk N, Paraïso T K, Dynes J F, Lovic V, Sanzaro M, Roger T, De Marco I, Lucamarini M, Yuan Z L, Shields A J 2024 Nat. Electron. 7396

    [27]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 121012

    [28]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92025002

    [29]

    Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X, Lo G Q 2021 J. Lightwave Technol. 394374

    [30]

    Chen X, Milosevic M M, Stanković S, Reynolds S, Bucio T D, Li K, Thomson D J, Gardes F, Reed G T 2018 Proc. IEEE 1062101

    [31]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photonics 4518

    [32]

    Ogiso Y, Ozaki J, Ueda Y, Wakita H, Nagatani M, Yamazaki H, Nakamura M, Kobayashi T, Kanazawa S, Hashizume Y, Tanobe H, Nunoya N, Lda M, Miyamoto Y, Lshikawa M 2019 J. Lightwave Technol. 38249

    [33]

    Abellan C, Amaya W, Domenech D, Muñoz P, Capmany J, Longhi S, Mitchell M W, Pruneri V 2016 Optica 3989

    [34]

    Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O’Brien J L, Thompson M G 2017 Nat. Commun. 813984

    [35]

    Zhang M, Wang C, Kharel P, Zhu D, Lončar M 2021 Optica 8652

    [36]

    Berikaa E, Alam M S, Li W J, Bernal S, Krueger B, Pittalà F, Plant D V 2023 IEEE Photon. Technol. Lett. 35850

    [37]

    Lomonte E, Wolff M A, Beutel F, Ferrari S, Schuck C, Pernice W H P, Lenzini F 2021 Nat. Commun. 126847

    [38]

    Xiong W J, Wang G L, Li J F, Zhao C, Wang W W, Radamson H H 2021 J. Mater. Sci-Mater. El. 321

    [39]

    Wilmart Q, El Dirani H, Tyler N, Fowler D, Malhouitre S, Garcia S, Casale M, Kerdiles S, Hassan K, Monat C, Letartre X, Kamel A, Pu M, Yvind K, Oxenløwe L K, Rabaud W, Sciancalepore C, Szelag B, Olivier S 2019 Appl. Sci. 9255

    [40]

    Sacher W D, Huang Y, Lo G Q, Poon J K S 2015 J. Lightw. Technol. 33901

    [41]

    Gyger S, Zichi J, Schweickert L, Elshaari A W, Steinhauer S, Covre da Silva S F, Rastelli A, Zwiller V, Jöns K D, Errando Herranz C 2021 Nat.Commun. 121408

    [42]

    Schuck C, Guo X, Fan L, Ma X, Poot M, Tang H X 2016 Nat. Commun. 710352

    [43]

    Zhu C X, Chen Z Y, Li Y, Wang X Z, Wang C Z, Zhu Y L, Liang F T, Cai W Q, Jin G, Liao S K, Peng C Z 2022 Phys. Rev. Appl. 17064034

    [44]

    Beutel F, Brückerhoff Plückelmann F, Gehring H, Kovalyuk V, Zolotov P, Goltsman G, Pernice W H P 2022 Optica 91121

    [45]

    Dolphin J A, Paraïso T K, Du H, Woodward R I, Marangon D G, Shields A J 2023 npj Quantum Inf. 984

    [46]

    Du Y Q, Zhu X, Hua X, Zhao Z G, Hu X, Qian Y, Xiao X, Wei K J 2023 Chip 2100039

    [47]

    Wei K J, Hu X, Du Y Q, Hua X, Zhao Z G, Chen Y, Huang C F, Xiao X 2023 Photon. Res. 111364

    [48]

    Sax R, Boaron A, Boso G, Atzeni S, Crespi A, Grünenfelder F, Rusca D, Al Saadi A, Bronzi D, Kupijai S 2023 Photon. Res. 111007

    [49]

    Lin Z H, Gao Y F, Zhou L, Yuan H H, Zhu Y T, Lin Z J, Zhang W, Huang Y D, Cai X L, Yuan Z L 2025 Optica Quantum 3195

    [50]

    Heo H, Woo M K, Park C H, Jang H S, Hwang H, Lee H, Seo M K, Kim S, Kwon H, Jung H, Han S W 2025 APL Photonics 10031301

    [51]

    Li L, Wang T, Li X H, Huang P, Guo Y Y, Lu L J, Zhou L J, Zeng G H 2023 Photon. Res. 11504

    [52]

    Bian Y M, Pan Y, Xu X S, Zhao L, Li Y, Huang W, Zhang L, Yu S, Zhang Y C, Xu B J 2024 Appl. Phys. Lett. 124174001

    [53]

    Piétri Y, Trigo Vidarte L, Schiavon M, Vivien L, Grangier P, Rhouni A, Diamanti E 2024 Optica Quantum 2428

    [54]

    Aldama J, Sarmiento S, Vidarte L T, Etcheverry S, Grande I L, Castelvero L, Hinojosa A, Beckerwerth T, Piétri Y, Rhouni A 2024 arXiv:2412.03208[quant-ph]

    [55]

    Hajomer A A, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2024 Optica 111197

    [56]

    Hajomer A A, Bomhals A, Bruynsteen C, Sidhique A, Derkach I, Andersen U L, Yin X, Gehring T 2025 arXiv:2504.09308[quant-ph]

    [57]

    Ng S Q, Kanitschar F, Zhang G, Wang C 2025 arXiv:2504.08298[quant-ph]

    [58]

    Ma C X, Sacher W D, Tang Z Y, Mikkelsen J C, Yang Y S, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 31274

    [59]

    Bunandar D, Lentine A, Lee C, Cai H, Long C M, Boynton N, Martinez N, DeRose C, Chen C C, Grein M, Trotter D, Starbuck A, Pomerene A, Hamilton S, Wong F N C, Camacho R, Davids P, Urayama J, Englund D 2018 Phys. Rev. X 8021009

    [60]

    Cao L, Luo W, Wang Y X, Zou J, Yan R D, Cai H, Zhang Y, Hu X L, Jiang C, Fan W J, Zhou X Q, Dong B, Luo X S, Lo G Q, Wang Y X, Xu Z W, Sun S H, Wang X B, Hao Y L, Jin Y F, Kwong D L, Kwek L C, Liu A Q 2020 Phys. Rev. Appl. 14011001

    [61]

    Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang T, Huang W, Xu B J 2022 Commun. Phys. 5162

    [62]

    Zhang Y C, Chen Z Y, Chu B J, Zhou C, Wang X Y, Zhao Y J, Xu Y F, Xu C, Wang H J, Zheng Z Y, Huang Y D, Xu C C, Zhang X X, Shen T, Huang G, Zheng Y W, Fei Z X, Huang W N, Zhu M L, Huang L Y, Luo B, Yu S, Guo H 2020 Bull. Am. Phys. Soc. 651

    [63]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13839

    [64]

    Wang C, Primaatmaja I W, Ng H J, Haw J Y, Ho R, Zhang J R, Zhang G, Lim C 2023 Nat. Commun. 14316

    [65]

    Chrysostomidis T, Roumpos I, Outerelo D A, Troncoso Costas M, Moskalenko V, Garcia Escartin J C, Diaz Otero F J, Vyrsokinos K 2023 EPJ Quantum Technol. 105

    [66]

    Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4010330

    [67]

    Li L, Cai M L, Wang T, Tan Z C, Huang P, Wu K, Zeng G H 2024 Photon. Res. 121379

    [68]

    Zhao Z G, Hua X, Du Y Q, Xu C Y, Xie F, Zhang Z R, Xiao X, Wei K J 2024 Opt. Express 3238793

    [69]

    Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 421209

    [70]

    Wang X Y, Zheng T, Jia Y X, Huang J, Zhu X Y, Shi Y Q, Wang N, Lu Z G, Zou J, Li Y M 2024 Photonics 11468

    [71]

    Bian Y M, Yang J, Jiang H Y, Huang W, Su Q, Yu S, Zhang L, Zhang Y C, Xu B J 2025 Opt. Lett. 501216

    [72]

    Bertapelle T, Avesani M, Santamato A, Montanaro A, Chiesa M, Rotta D, Artiglia M, Sorianello V, Testa F, De Angelis G,Contestabile G, Vallone G, Romagnoli M, Villoresi P 2025 Optica Quantum 3111

    [73]

    Sun S H, Huang A Q 2022 Entropy 24260

    [74]

    Chen Y, Huang C F, Chen Z H, He W J, Zhang C X, Sun S H, Wei K J 2022 Phys. Rev. A 106022614

    [75]

    Zhang C, Hu X L, Jiang C, Chen J P, Liu Y, Zhang W J, Yu Z W, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2022 Phys.Rev. Lett. 128190503

    [76]

    Kang X, Ye P, Wang S, Zhang G W, Wang Z H, Chen J L, Yin Z Q, He D Y, Chen W, Fan Yuan G J, Guo G C, Han Z F 2025 Phys. Rev. Appl. 23024014

    [77]

    Tan H, Li W, Zhang L K, Wei K J, Xu F H 2021 Phys. Rev. Appl. 15064038

    [78]

    Li L, Huang P, Wang T, Zeng G H 2021 Phys. Rev. A 103032611

    [79]

    Ye P, Chen W, Wang Z H, Zhang G W, Ding Y Y, Huang G Z, Yin Z Q, Wang S, He D Y, Liu W, Guo G C, Han Z F 2022 Opt. Express 3039911

    [80]

    Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 564

    [81]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L X, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130210801

    [82]

    Zhu H T, Huang Y Z, Liu H, Zeng P, Zou M, Dai Y Q, Tang S B, Li H, You L X, Wang Z, Chen Y A, Ma X F, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130030801

    [83]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 133903

    [84]

    Wang F X, Chen W, Yin Z Q, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Appl. 11024070

    [85]

    Sekga C, Mafu M, Senekane M 2023 Sci. Rep. 131229

  • [1] 李思莹, 朱顺, 胡飞飞, 黄昱, 林旭斌, 覃楚珺, 曹渊, 刘云. 改进的关联源量子密钥分发.  , doi: 10.7498/aps.74.20250268
    [2] 郭晓敏, 王岐岐, 罗越, 宋智杰, 李正雅, 瞿毅坤, 郭龑强, 肖连团. 实时熵源评估二重并行连续变量量子随机数发生器.  , doi: 10.7498/aps.74.20250333
    [3] 罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴. 基于监控标记单光子源的量子密钥分发协议.  , doi: 10.7498/aps.73.20241269
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发.  , doi: 10.7498/aps.72.20230652
    [5] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议.  , doi: 10.7498/aps.71.20211456
    [6] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用.  , doi: 10.7498/aps.71.20220344
    [7] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发.  , doi: 10.7498/aps.69.20191689
    [8] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究.  , doi: 10.7498/aps.63.140303
    [9] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发.  , doi: 10.7498/aps.59.287
    [10] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究.  , doi: 10.7498/aps.57.5605
    [11] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案.  , doi: 10.7498/aps.57.4941
    [12] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用.  , doi: 10.7498/aps.57.678
    [13] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案.  , doi: 10.7498/aps.57.5600
    [14] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案.  , doi: 10.7498/aps.56.6427
    [15] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统.  , doi: 10.7498/aps.56.6434
    [16] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发.  , doi: 10.7498/aps.56.1924
    [17] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发.  , doi: 10.7498/aps.56.5243
    [18] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统.  , doi: 10.7498/aps.55.4642
    [19] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统.  , doi: 10.7498/aps.54.3622
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统.  , doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  45
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-08

/

返回文章
返回
Baidu
map