搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光熔化3D打印高性能铁基非晶软磁器件及其物理机制

林可心 杨卫明 李文宇 马严 马丽 张响 刘海顺

引用本文:
Citation:

激光熔化3D打印高性能铁基非晶软磁器件及其物理机制

林可心, 杨卫明, 李文宇, 马严, 马丽, 张响, 刘海顺

Laser melting 3D printing prepared high-performance iron-based amorphous soft magnetic devices and their physical mechanisms

LIN Kexin, YANG Weiming, LI Wenyu, MA Yan, MA Li, ZHANG Xiang, LIU Haishun
cstr: 32037.14.aps.74.20250559
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 铁基非晶合金具有低矫顽力、低损耗等优异性能, 但受制于非晶形成能力和力学性能限制, 难以制备复杂结构器件. 3D打印理论上可以制备任意结构的器件. 本文利用选择性激光熔化3D打印技术, 通过打印参数优化, 获得低能量输入熔池, 并提高熔池轨道和成型层的搭接质量, 成功克服制备过程中非晶相与成型质量相互制约的瓶颈, 获得致密度为94.3%、矫顽力为0.5 Oe的铁基非晶合金, 且相比粉末, 所得铁基非晶合金的饱和磁化强度提升至0.89 T, 并制备出复杂结构的铁基非晶器件. 本文研究为3D打印高质量铁基非晶器件提供了新的思路, 对推动铁基非晶合金的应用具有重要意义.
    Fe-based amorphous alloys have exceptional properties such as low coercivity and core loss. In recent years, the development of amorphous alloys by using selective laser melting (SLM) technology has become the focus of attention. However, the glass-forming ability (GFA) and mechanical properties pose challenges for fabricating Fe-based amorphous alloys with complex geometries. This work aims to establish fundamental processing-(micro) structure-property links in Fe-based amorphous alloys processed by selective laser melting (SLM). With that purpose, a low-energy-input melt pool is achieved and the overlap quality between adjacent melt tracks and successive deposition layers is enhanced, through optimization of printing parameters. The Fe-based amorphous alloy is obtained with a high relative density of 94.3% and low coercivity of 0.5 Oe. Furthermore, the saturation magnetization of the printed alloy increases to 0.89 T compared with that of the powder feedstock. This work overcomes the mutual constraint between the GFA and part quality in fabricating of complex-structure Fe-based amorphous alloys, and is of great significance for promoting the application of Fe-based amorphous alloys.
      通信作者: 杨卫明, wmyang@cumt.edu.cn
    • 基金项目: 国家自然科学基金面上项目(批准号: 52171165)资助的课题.
      Corresponding author: YANG Weiming, wmyang@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52171165).
    [1]

    Wang Y J, Lucia O, Zhang Z, Guan Y S, Xu D G 2020 IET Power Electron. 13 1711Google Scholar

    [2]

    Battal F, Balci S, Sefa I 2020 Meas. J. Int. Meas. Confed. 171 108848Google Scholar

    [3]

    Mahesh M, Kumar K V, Abebe M, Udayakumar L, Mathankumar M 2021 Mater. Today Proc. 46 3888Google Scholar

    [4]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [5]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235Google Scholar

    [6]

    Inoue A, Shinohara Y, Gook J S 1995 Mater. Trans. 36 1427Google Scholar

    [7]

    Ponnambalam V, Poon S J, Shiflet G J 2004 J. Mater. Res. 19 1320Google Scholar

    [8]

    Amiya K, Inoue A 2006 Mater. Trans. 47 1615Google Scholar

    [9]

    张雅楠, 王有骏, 孔令体, 李金富 2012 61 454Google Scholar

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 454Google Scholar

    [10]

    Suryanarayana C, Inoue A 2013 Int. Mater. Rev. 58 131Google Scholar

    [11]

    孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火 2023 72 026101Google Scholar

    Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hong L, Li W H 2023 Acta Phys. Sin. 72 026101Google Scholar

    [12]

    Sohrabi S, Fu J N, Li L Y, Zhang Y, Li X, Sun F, Ma J, Wang W H 2024 Prog. Mater. Sci. 144 101283Google Scholar

    [13]

    DebRoy T, Wei H L, Zuback J S, Mukherjee T, Elmer J W, Milewski J O, Beese A M, Wilson-Heid A D, De A, Zhang W 2018 Prog. Mater. Sci. 92 112Google Scholar

    [14]

    Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013 Mater. Today 16 37Google Scholar

    [15]

    Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018 Appl. Mater. Today 11 264Google Scholar

    [16]

    Thorsson L, Unosson M, Pérez-Prado M T, Jin X, Tiberto P, Barrera G, Adam B, Neuber N, Ghavimi A, Frey M, Busch R 2022 Mat. Design 215 110483Google Scholar

    [17]

    Lu Y Z, Huang Y J, Wu J, Lu X, Qin Z X, Daisenberger D, Chiu Y L 2018 Intermetallics 103 67Google Scholar

    [18]

    Ouyang D, Xing W, Li N, Li Y C, Liu L 2018 Addit. Manuf. 23 246

    [19]

    Marattukalam J J, Pacheco V, Karlsson D, Riekehr L, Lindwall J, Forsberg F, Jansson U, Sahlberg M, Hjörvarsson B 2020 Addit. Manuf. 33 101124

    [20]

    Qiu C, Panwisawas C, Ward M, Basoalto H C, Brooks J W, Attallah M M 2015 Acta Mater. 96 72Google Scholar

    [21]

    Xing W, Ouyang D, Li N, Liu L 2018 Intermetallics 103 101Google Scholar

    [22]

    Ren Z, Zhang D Z, Fu G, Jiang J, Zhao M 2021 Mat. Design 207 109857Google Scholar

    [23]

    Ge Y Q, Qiao J F, Chang Z X, Hou M, Xu H J, Yang A A, Song Y, Bi W H, Ma N S 2024 Mater. Today Commun. 39 108597Google Scholar

    [24]

    Nguyen Q B, Luu D N, Nai S M, Zhu Z, Chen Z, Wei J 2018 Arch. Civ. Mech. Eng. 18 948Google Scholar

    [25]

    Yang G L, Lin X, Liu F C, Hu Q, Ma L, Li J F, Huang W D 2012 Intermetallics 22 110Google Scholar

    [26]

    Nam Y G, Koo B, Chang M S, Yang S, Yu J, Park Y H, Jeong J W 2020 Mater. Lett. 261 127068Google Scholar

    [27]

    石岩, 魏登松 2023 中国激光 50 131Google Scholar

    Shi Y, Wei D S 2023 Chin. J. Lasers 50 131Google Scholar

    [28]

    Han Q, Gu H, Setchi R 2019 Powder Technol. 352 91Google Scholar

    [29]

    Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020 Mater. Charact. 162 110206Google Scholar

    [30]

    Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I 2012 Rapid Prototyp. J. 18 201Google Scholar

    [31]

    Yuan W, Chen H, Cheng T, Wei Q 2020 Mat. Design 189 108542Google Scholar

    [32]

    Zhang Y, Liu H S, Mo J Y, Wang M Z, Chen Z, He Y Z, Yang W M, Tang C G 2019 Phys. Chem. Chem. Phys. 21 12406Google Scholar

    [33]

    Özden M G, Morley N A 2023 J. Alloys Compd. 960 170644Google Scholar

    [34]

    Sun H, Flores K M 2013 Intermetallics 43 53Google Scholar

    [35]

    Li S Y, Fu G, Li H L, Ren Z H, Li S B, Xiao H Q, Peng Q G 2023 J. Alloys Compd. 967 171778Google Scholar

    [36]

    Murayama S, Inaba H, Hoshi K, Obi Y 1993 IEEE Trans. Magn. 29 2682Google Scholar

    [37]

    Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019 J. Alloys Compd. 771 769Google Scholar

    [38]

    邬小萍, 刘淑凤, 马通达, 王书明, 王梦圆 2024 金属功能材料 31 99Google Scholar

    Wu X P, Liu S F, Ma T D, Wang S M, Wang M Y 2024 AM& D. 31 99Google Scholar

    [39]

    郭子政, 胡旭波 2013 62 057501Google Scholar

    Guo Z Z, Hu X B 2013 Acta Phys. Sin. 62 057501Google Scholar

    [40]

    Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015 Mat. Design 86 703Google Scholar

    [41]

    Rodríguez-Sánchez M, Sadanand S, Ghavimi A, Busch R, Tiberto P, Ferrara E, Barrera G, Thorsson L, Wachter H J, Gallino I, Pérez-Prado M T 2024 Mater. 35 102111

  • 图 1  (a)粉末的粒径分布图; (b) XRD图; (c) DSC图

    Fig. 1.  (a) Particle size distribution diagram of powder; (b) XRD diagram; (c) DSC diagram.

    图 2  不同打印参数下样品的SEM形貌

    Fig. 2.  SEM morphology of samples under different printing.

    图 3  (a)不同Pv下样品致密度情况; (b)不同ht下样品致密度情况

    Fig. 3.  (a) Density distribution of samples under different P and v conditions; (b) density distribution of samples under different h and t conditions.

    图 4  (a)不同Pv下样品的非晶含量; (b)样品(P = 160 W, v = 2600 mm/s, h = 95 μm, t = 30 μm) 的XRD图; (c) DSC图

    Fig. 4.  (a) Amorphous content of samples under different P and v conditions; (b) XRD diagram of samples (P = 160 W, v = 2600 mm/s, h = 95 μm, t = 30 μm); (c) DSC diagram.

    图 5  (a)—(d)样品(P = 160 W, v = 2600 mm/s, h = 95 μm, t = 30 μm)的扫描电镜图; (e)—(k)透射电子显微镜图

    Fig. 5.  (a)–(d) Scanning electron microscopy images of the sample (P = 160 W, v = 2600 mm/s, h = 95 μm, t = 30 μm); (e)–(k) transmission electron microscopy images.

    图 6  (a)不同ht下样品的非晶含量; (b)不同ht下样品的XRD图; (c) DSC图; (d) 电机结构; (e)电机结构的XRD图; (f) DSC图

    Fig. 6.  (a) Amorphous content of samples under different h and t conditions; (b) XRD diagram of samples under different h and t conditions; (c) DSC diagram; (d) motor structure; (e) XRD diagram of motor structure; (f) DSC diagram.

    图 7  (a)室温下粉末及打印样品的磁滞回线; (b)低磁场下磁滞回线的放大图

    Fig. 7.  (a) Hysteresis loops of the powder and printed samples at room temperature; (b) magnified view of the hysteresis loops under low magnetic field.

    表 1  本研究中获得的相对密度、非晶分数和磁性能, 并与文献报道的对比

    Table 1.  Comparison of the relative density, amorphous fraction, and magnetic properties achieved in this study with those reported in the literature for similar alloys.

    BMG CompositionDensity
    /%
    Amorphous fraction/%Ms/
    T
    Hc/
    Oe
    Reference
    Fe68.3C6.9Si2.5B6.7P8.7Cr2.3Mo2.5Al2.199.71.080.35[40]
    Fe71Si10B11C6Cr294901.34.98[37]
    Fe73.7B11Si11Cr2.3C296471.2220.1[26,32]
    Fe73Si11B11C3Cr298701.296.4[16]
    Fe73.7B11Si11Cr2.3C274461.1935.06[41]
    Powder (Fe70W9Mo3Cr5Ni3Si4B4CMn)

    100

    0.84

    2

    This work
    Bulk (160 W/2600 mm/s /95 μm/15 μm)
    79.1

    98.1

    0.89

    0.7

    This work
    Bulk (160 W/2600 mm/s /65 μm /15 μm)
    94.3

    100

    0.88

    0.5

    This work
    下载: 导出CSV
    Baidu
  • [1]

    Wang Y J, Lucia O, Zhang Z, Guan Y S, Xu D G 2020 IET Power Electron. 13 1711Google Scholar

    [2]

    Battal F, Balci S, Sefa I 2020 Meas. J. Int. Meas. Confed. 171 108848Google Scholar

    [3]

    Mahesh M, Kumar K V, Abebe M, Udayakumar L, Mathankumar M 2021 Mater. Today Proc. 46 3888Google Scholar

    [4]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [5]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235Google Scholar

    [6]

    Inoue A, Shinohara Y, Gook J S 1995 Mater. Trans. 36 1427Google Scholar

    [7]

    Ponnambalam V, Poon S J, Shiflet G J 2004 J. Mater. Res. 19 1320Google Scholar

    [8]

    Amiya K, Inoue A 2006 Mater. Trans. 47 1615Google Scholar

    [9]

    张雅楠, 王有骏, 孔令体, 李金富 2012 61 454Google Scholar

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 454Google Scholar

    [10]

    Suryanarayana C, Inoue A 2013 Int. Mater. Rev. 58 131Google Scholar

    [11]

    孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火 2023 72 026101Google Scholar

    Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hong L, Li W H 2023 Acta Phys. Sin. 72 026101Google Scholar

    [12]

    Sohrabi S, Fu J N, Li L Y, Zhang Y, Li X, Sun F, Ma J, Wang W H 2024 Prog. Mater. Sci. 144 101283Google Scholar

    [13]

    DebRoy T, Wei H L, Zuback J S, Mukherjee T, Elmer J W, Milewski J O, Beese A M, Wilson-Heid A D, De A, Zhang W 2018 Prog. Mater. Sci. 92 112Google Scholar

    [14]

    Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013 Mater. Today 16 37Google Scholar

    [15]

    Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018 Appl. Mater. Today 11 264Google Scholar

    [16]

    Thorsson L, Unosson M, Pérez-Prado M T, Jin X, Tiberto P, Barrera G, Adam B, Neuber N, Ghavimi A, Frey M, Busch R 2022 Mat. Design 215 110483Google Scholar

    [17]

    Lu Y Z, Huang Y J, Wu J, Lu X, Qin Z X, Daisenberger D, Chiu Y L 2018 Intermetallics 103 67Google Scholar

    [18]

    Ouyang D, Xing W, Li N, Li Y C, Liu L 2018 Addit. Manuf. 23 246

    [19]

    Marattukalam J J, Pacheco V, Karlsson D, Riekehr L, Lindwall J, Forsberg F, Jansson U, Sahlberg M, Hjörvarsson B 2020 Addit. Manuf. 33 101124

    [20]

    Qiu C, Panwisawas C, Ward M, Basoalto H C, Brooks J W, Attallah M M 2015 Acta Mater. 96 72Google Scholar

    [21]

    Xing W, Ouyang D, Li N, Liu L 2018 Intermetallics 103 101Google Scholar

    [22]

    Ren Z, Zhang D Z, Fu G, Jiang J, Zhao M 2021 Mat. Design 207 109857Google Scholar

    [23]

    Ge Y Q, Qiao J F, Chang Z X, Hou M, Xu H J, Yang A A, Song Y, Bi W H, Ma N S 2024 Mater. Today Commun. 39 108597Google Scholar

    [24]

    Nguyen Q B, Luu D N, Nai S M, Zhu Z, Chen Z, Wei J 2018 Arch. Civ. Mech. Eng. 18 948Google Scholar

    [25]

    Yang G L, Lin X, Liu F C, Hu Q, Ma L, Li J F, Huang W D 2012 Intermetallics 22 110Google Scholar

    [26]

    Nam Y G, Koo B, Chang M S, Yang S, Yu J, Park Y H, Jeong J W 2020 Mater. Lett. 261 127068Google Scholar

    [27]

    石岩, 魏登松 2023 中国激光 50 131Google Scholar

    Shi Y, Wei D S 2023 Chin. J. Lasers 50 131Google Scholar

    [28]

    Han Q, Gu H, Setchi R 2019 Powder Technol. 352 91Google Scholar

    [29]

    Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020 Mater. Charact. 162 110206Google Scholar

    [30]

    Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I 2012 Rapid Prototyp. J. 18 201Google Scholar

    [31]

    Yuan W, Chen H, Cheng T, Wei Q 2020 Mat. Design 189 108542Google Scholar

    [32]

    Zhang Y, Liu H S, Mo J Y, Wang M Z, Chen Z, He Y Z, Yang W M, Tang C G 2019 Phys. Chem. Chem. Phys. 21 12406Google Scholar

    [33]

    Özden M G, Morley N A 2023 J. Alloys Compd. 960 170644Google Scholar

    [34]

    Sun H, Flores K M 2013 Intermetallics 43 53Google Scholar

    [35]

    Li S Y, Fu G, Li H L, Ren Z H, Li S B, Xiao H Q, Peng Q G 2023 J. Alloys Compd. 967 171778Google Scholar

    [36]

    Murayama S, Inaba H, Hoshi K, Obi Y 1993 IEEE Trans. Magn. 29 2682Google Scholar

    [37]

    Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019 J. Alloys Compd. 771 769Google Scholar

    [38]

    邬小萍, 刘淑凤, 马通达, 王书明, 王梦圆 2024 金属功能材料 31 99Google Scholar

    Wu X P, Liu S F, Ma T D, Wang S M, Wang M Y 2024 AM& D. 31 99Google Scholar

    [39]

    郭子政, 胡旭波 2013 62 057501Google Scholar

    Guo Z Z, Hu X B 2013 Acta Phys. Sin. 62 057501Google Scholar

    [40]

    Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015 Mat. Design 86 703Google Scholar

    [41]

    Rodríguez-Sánchez M, Sadanand S, Ghavimi A, Busch R, Tiberto P, Ferrara E, Barrera G, Thorsson L, Wachter H J, Gallino I, Pérez-Prado M T 2024 Mater. 35 102111

  • [1] 张响, 宋英杰, 刘海顺, 熊翔, 杨卫明, 韩陈康. Fe73.5Si13.5B9Cu1Nb3非晶合金的高温氧化和晶化机理.  , 2025, 74(8): 088101. doi: 10.7498/aps.74.20250112
    [2] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金.  , 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [3] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明. 铁基非晶条带催化降解性能的退火晶化调控机理.  , 2024, 73(9): 098801. doi: 10.7498/aps.73.20240249
    [4] 孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火. B元素添加对FePBCCu合金非晶形成能力、磁性能和力学性能的影响.  , 2023, 72(2): 026101. doi: 10.7498/aps.72.20221553
    [5] 张家滕, 徐吉元, 金佳莹, 孟睿阳, 董生智. 晶界添加PrCu合金对(Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05磁体磁性能与微观组织的影响.  , 2022, 71(16): 167502. doi: 10.7498/aps.71.20220406
    [6] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析.  , 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [7] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究.  , 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [8] 李蕊轩, 张勇. 熵在非晶材料合成中的作用.  , 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [9] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平. 块体非晶合金的韧塑化.  , 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [10] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状.  , 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [11] 侯志鹏, 苏峰, 王文全. 三元Co79Zr18Cr3合金中高矫顽力.  , 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [12] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析.  , 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [13] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响.  , 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [14] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响.  , 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [15] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响.  , 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [16] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型.  , 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [17] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型.  , 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [18] 邱学军, 张云鹏, 何正红, 白 浪, 刘国磊, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜.  , 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [19] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对矫顽力的影响.  , 2005, 54(9): 4389-4394. doi: 10.7498/aps.54.4389
    [20] 李印峰, 陈笃行, 沈保根, M.VAZQUEZ, A.HERNANDO. 非晶态铁基合金退火样品的偏移回线.  , 2001, 50(5): 953-957. doi: 10.7498/aps.50.953
计量
  • 文章访问数:  431
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-27
  • 修回日期:  2025-06-05
  • 上网日期:  2025-06-13
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map