-
采用密度泛函理论结合非平衡格林函数的第一性原理计算方法, 计算了碳化硅(SiC)单链连接非对称双氢钝化锯齿型SiC纳米带上方、中上、中下和下方位置的4种分子器件的自旋极化电流-电压特性, 开展非对称双氢钝化锯齿型SiC纳米带自旋器件设计与自旋输运性质研究. 结果显示4种器件在P磁构型下的最大自旋电流值依次减小, 但是均呈现单自旋方向的整流效应. SiC单链通过中下位置连接的器件自旋向上电流呈现性能最好的整流效应, 最大整流比可以达到6.9×106. 更重要的是, 该器件自旋向上电流-电压曲线在负电压区间呈现出唯一的负微分电阻效应. 此外, SiC单链通过中上位置连接的器件无论在P磁构型还是AP磁构型下都在负电压区间呈现完美的自旋过滤效应, 自旋过滤效率接近100%. 本文将自旋整流和自旋过滤以及自旋整流和负微分电阻分别集成到单个分子器件中, 实现了具备两个功能的复合型自旋器件的理论设计, 本研究为今后实际制备和调控基于锯齿型SiC纳米带自旋器件提供了重要的解决方案.In this paper, the first-principles method based on density functional theory and non-equilibrium Green’s function is used to design and investigate the transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation. The zigzag SiC nanoribbons via edge asymmetric dual-hydrogenation are selected as electrodes, and SiC atomic single chains are connected to the above, upper-middle, lower-middle, and below the positions of the electrodes to form four molecular devices: M1, M2, M3 and M4. In this study, it is found that the maximum spin current value of the device in the P-magnetic configuration decreases sequentially with the connection position transitioning from top to bottom. The spin-down current-voltage curves of M1, M2, and M4 exhibit significant spin rectification effects, with maximum rectification ratios of 9.8×105, 5.2×105, and 6.7×104, respectively. The spin-up current-voltage curve of M3 shows the best rectification effect, with a maximum rectification ratio of 6.9×106. More importantly, the spin-up current-voltage curve of M3 exhibits a unique negative differential resistance effect in the negative voltage range. In the AP magnetic configuration, the spin-up currents of the four devices are very weak throughout the bias region and hardly changes with the increase of voltage. Although there are differences in the spin-down current between the four devices within the positive and negative bias ranges, they are not significant, thus failing to demonstrate excellent rectification effects. In addition, M2 exhibits perfect spin filtering effect in the negative voltage range in both P and AP magnetic configurations, with a spin filtering efficiency close to 100%. This work integrates spin rectification and spin filtering, as well as spin rectification and negative differential resistance, into a single molecular device, achieving the theoretical design of a composite spin device with two functions. The research results provide an important solution for practically preparing and controlling zigzag SiC nanoribbon spin devices in the future.
-
Keywords:
- SiC nanoribbon /
- spin transport /
- spin rectification /
- spin filtering
[1] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132
Google Scholar
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[3] Ruiz-Puigdollers A, Gamallo P 2017 Carbon 114 301
Google Scholar
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
Google Scholar
[5] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
Google Scholar
[6] Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748
Google Scholar
[7] Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229
Google Scholar
[8] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191
Google Scholar
[9] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[10] Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179
Google Scholar
[11] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 72 038502
Google Scholar
Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502
Google Scholar
[12] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412
Google Scholar
[13] Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015 Nat. Commun. 6 6324
Google Scholar
[14] Koga T, Nitta J, Takayanagi H, Datta S 2002 Phys. Rev. Lett. 88 126601
Google Scholar
[15] Zhang K B, Tan S H, Peng X F, Long M Q 2024 Chin. Phys. Lett. 41 097301
Google Scholar
[16] Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004 Phys. Rev. Lett. 93 117203
Google Scholar
[17] Sharma M, Wang S X, Nickel J H 1999 Phys. Rev. Lett. 82 616
Google Scholar
[18] Guan J, Chen W, Li Y F, Yu G T, Shi Z M, Huang X R, Sun C C, Chen Z F 2013 Adv. Funct. Mater. 23 1507
Google Scholar
[19] Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Sur. Sci. 519 146203
Google Scholar
[20] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
Google Scholar
[21] Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760
Google Scholar
[22] Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937
Google Scholar
[23] Kan E J, Li Z, Yang J, Hou J 2007 Appl. Phys. Lett. 91 243116
Google Scholar
[24] Rezapour M R, Yun J, Lee G, Kim K S 2016 JPCL 7 5049
[25] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437
Google Scholar
[26] Lopez-Urias F, Terrones M, Terrones H 2015 Carbon 84 317
Google Scholar
[27] Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023 Modell. Simul. Mater. Sci. Eng. 32 015008
[28] Lou P, Lee J Y 2009 J. Phys. Chem. C 113 12637
Google Scholar
[29] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强 2022 71 078501
Google Scholar
Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022 Acta Phys. Sin. 71 078501
Google Scholar
[30] Zeng J, Zhou Y H 2020 Physica E 118 113861
Google Scholar
[31] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010 Nat. Nanotechnol. 5 727
Google Scholar
[32] 李晓波, 刘帅奇, 黄演, 马玉, 丁文策 2025 74 057101
Google Scholar
Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025 Acta Phys. Sin. 74 057101
Google Scholar
[33] Elasser A, Chow T P 2002 Proc. IEEE 90 969
Google Scholar
[34] Narushima T, Goto T, Hirai T, Iguchi Y 1997 Mater. Trans. JIM 38 821
Google Scholar
[35] Shi Z, Zhang Z, Kutana A, Yakobson B I 2015 ACS Nano 9 9802
Google Scholar
[36] Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013 J. Mater. Chem. C 1 2131
Google Scholar
[37] Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019 J. Comput. Electron. 18 407
Google Scholar
[38] Chabi S, Kadel K 2020 Nanomaterials 10 2226
Google Scholar
[39] Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010 Phys. Rev. B 81 075433
Google Scholar
[40] Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024 Physica B 695 416586
Google Scholar
[41] Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102
Google Scholar
[42] Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808
Google Scholar
[43] Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022 Physica E 138 115098
Google Scholar
[44] Taghizade N, Faizabadi E 2021 Mater. Sci. Eng. B 271 115253
Google Scholar
[45] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901
Google Scholar
[46] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207
Google Scholar
-
图 1 锯齿型SiC纳米带(a)下边界Si原子或(b)上边界C原子被双氢原子钝化的结构与自旋能带图; (c) SiC单链连接非对称双氢钝化锯齿型SiC纳米带上方、中上、中下和下方位置的分子器件模型, 阴影区域的L, R分别为器件的左右电极, 箭头分别表示P和AP磁构型的自旋方向
Fig. 1. Structure and spin band diagram of zigzag SiC nanoribbon with (a) lower boundary Si atoms or (b) upper boundary C atoms passivated by dihydrogen atoms; (c) device model of SiC single chain connected asymmetric dihydrogen passivated zigzag SiC nanoribbon at the upper, middle upper, middle lower and lower positions; L and R in the shaded area are the left and right electrodes of the device, and the arrows indicate the spin direction of P and AP magnetic configurations, respectively.
图 2 4种分子器件在P磁构型的零偏压自旋输运谱和最大输运峰所处能量位置的输运本征态. Isovalue取固定值为0.2 (a) M1; (b) M2; (c) M3; (d) M4
Fig. 2. The zero-bias spin-resolved transmission spectra of four types of molecular devices and the transmission eigenstates at the energy position of the maximum transmission peak in P magnetic configuration. Isovalue is fixed on 0.2: (a) M1; (b) M2; (c) M3; (d) M4.
图 5 4种器件在AP磁构型的零偏压自旋输运谱和最大输运峰所处能量位置的输运本征态. Isovalue取固定值为0.2 (a) M1; (b) M2; (c) M3; (d) M4
Fig. 5. The zero-bias spin-resolved transmission spectra of four types of devices and the transmission eigenstates at the energy position of the maximum transmission peak in AP magnetic configuration. Isovalue is fixed on 0.2: (a) M1; (b) M2; (c) M3; (d) M4.
-
[1] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132
Google Scholar
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[3] Ruiz-Puigdollers A, Gamallo P 2017 Carbon 114 301
Google Scholar
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
Google Scholar
[5] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
Google Scholar
[6] Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748
Google Scholar
[7] Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229
Google Scholar
[8] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191
Google Scholar
[9] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[10] Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179
Google Scholar
[11] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 72 038502
Google Scholar
Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502
Google Scholar
[12] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412
Google Scholar
[13] Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015 Nat. Commun. 6 6324
Google Scholar
[14] Koga T, Nitta J, Takayanagi H, Datta S 2002 Phys. Rev. Lett. 88 126601
Google Scholar
[15] Zhang K B, Tan S H, Peng X F, Long M Q 2024 Chin. Phys. Lett. 41 097301
Google Scholar
[16] Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004 Phys. Rev. Lett. 93 117203
Google Scholar
[17] Sharma M, Wang S X, Nickel J H 1999 Phys. Rev. Lett. 82 616
Google Scholar
[18] Guan J, Chen W, Li Y F, Yu G T, Shi Z M, Huang X R, Sun C C, Chen Z F 2013 Adv. Funct. Mater. 23 1507
Google Scholar
[19] Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Sur. Sci. 519 146203
Google Scholar
[20] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
Google Scholar
[21] Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760
Google Scholar
[22] Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937
Google Scholar
[23] Kan E J, Li Z, Yang J, Hou J 2007 Appl. Phys. Lett. 91 243116
Google Scholar
[24] Rezapour M R, Yun J, Lee G, Kim K S 2016 JPCL 7 5049
[25] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437
Google Scholar
[26] Lopez-Urias F, Terrones M, Terrones H 2015 Carbon 84 317
Google Scholar
[27] Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023 Modell. Simul. Mater. Sci. Eng. 32 015008
[28] Lou P, Lee J Y 2009 J. Phys. Chem. C 113 12637
Google Scholar
[29] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强 2022 71 078501
Google Scholar
Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022 Acta Phys. Sin. 71 078501
Google Scholar
[30] Zeng J, Zhou Y H 2020 Physica E 118 113861
Google Scholar
[31] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010 Nat. Nanotechnol. 5 727
Google Scholar
[32] 李晓波, 刘帅奇, 黄演, 马玉, 丁文策 2025 74 057101
Google Scholar
Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025 Acta Phys. Sin. 74 057101
Google Scholar
[33] Elasser A, Chow T P 2002 Proc. IEEE 90 969
Google Scholar
[34] Narushima T, Goto T, Hirai T, Iguchi Y 1997 Mater. Trans. JIM 38 821
Google Scholar
[35] Shi Z, Zhang Z, Kutana A, Yakobson B I 2015 ACS Nano 9 9802
Google Scholar
[36] Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013 J. Mater. Chem. C 1 2131
Google Scholar
[37] Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019 J. Comput. Electron. 18 407
Google Scholar
[38] Chabi S, Kadel K 2020 Nanomaterials 10 2226
Google Scholar
[39] Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010 Phys. Rev. B 81 075433
Google Scholar
[40] Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024 Physica B 695 416586
Google Scholar
[41] Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102
Google Scholar
[42] Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808
Google Scholar
[43] Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022 Physica E 138 115098
Google Scholar
[44] Taghizade N, Faizabadi E 2021 Mater. Sci. Eng. B 271 115253
Google Scholar
[45] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901
Google Scholar
[46] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207
Google Scholar
计量
- 文章访问数: 316
- PDF下载量: 14
- 被引次数: 0