搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称双氢钝化锯齿型SiC纳米带复合功能自旋器件设计与输运

周文 彭淑平 邓淑玲 伍丹 范志强 张小姣

引用本文:
Citation:

非对称双氢钝化锯齿型SiC纳米带复合功能自旋器件设计与输运

周文, 彭淑平, 邓淑玲, 伍丹, 范志强, 张小姣

Design and transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation

ZHOU Wen, PENG Shuping, DENG Shuling, WU Dan, FAN Zhiqiang, ZHANG Xiaojiao
cstr: 32037.14.aps.74.20250553
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用密度泛函理论结合非平衡格林函数的第一性原理计算方法, 计算了碳化硅(SiC)单链连接非对称双氢钝化锯齿型SiC纳米带上方、中上、中下和下方位置的4种分子器件的自旋极化电流-电压特性, 开展非对称双氢钝化锯齿型SiC纳米带自旋器件设计与自旋输运性质研究. 结果显示4种器件在P磁构型下的最大自旋电流值依次减小, 但是均呈现单自旋方向的整流效应. SiC单链通过中下位置连接的器件自旋向上电流呈现性能最好的整流效应, 最大整流比可以达到6.9×106. 更重要的是, 该器件自旋向上电流-电压曲线在负电压区间呈现出唯一的负微分电阻效应. 此外, SiC单链通过中上位置连接的器件无论在P磁构型还是AP磁构型下都在负电压区间呈现完美的自旋过滤效应, 自旋过滤效率接近100%. 本文将自旋整流和自旋过滤以及自旋整流和负微分电阻分别集成到单个分子器件中, 实现了具备两个功能的复合型自旋器件的理论设计, 本研究为今后实际制备和调控基于锯齿型SiC纳米带自旋器件提供了重要的解决方案.
    In this paper, the first-principles method based on density functional theory and non-equilibrium Green’s function is used to design and investigate the transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation. The zigzag SiC nanoribbons via edge asymmetric dual-hydrogenation are selected as electrodes, and SiC atomic single chains are connected to the above, upper-middle, lower-middle, and below the positions of the electrodes to form four molecular devices: M1, M2, M3 and M4. In this study, it is found that the maximum spin current value of the device in the P-magnetic configuration decreases sequentially with the connection position transitioning from top to bottom. The spin-down current-voltage curves of M1, M2, and M4 exhibit significant spin rectification effects, with maximum rectification ratios of 9.8×105, 5.2×105, and 6.7×104, respectively. The spin-up current-voltage curve of M3 shows the best rectification effect, with a maximum rectification ratio of 6.9×106. More importantly, the spin-up current-voltage curve of M3 exhibits a unique negative differential resistance effect in the negative voltage range. In the AP magnetic configuration, the spin-up currents of the four devices are very weak throughout the bias region and hardly changes with the increase of voltage. Although there are differences in the spin-down current between the four devices within the positive and negative bias ranges, they are not significant, thus failing to demonstrate excellent rectification effects. In addition, M2 exhibits perfect spin filtering effect in the negative voltage range in both P and AP magnetic configurations, with a spin filtering efficiency close to 100%. This work integrates spin rectification and spin filtering, as well as spin rectification and negative differential resistance, into a single molecular device, achieving the theoretical design of a composite spin device with two functions. The research results provide an important solution for practically preparing and controlling zigzag SiC nanoribbon spin devices in the future.
      通信作者: 范志强, zqfan@csust.edu.cn ; 张小姣, xjzhang@hutb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074046)和湖南省研究生科研创新项目(批准号: LXBZZ2024222)资助的课题.
      Corresponding author: FAN Zhiqiang, zqfan@csust.edu.cn ; ZHANG Xiaojiao, xjzhang@hutb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074046) and the Postgraduate Scientific Research and Innovation Program of Hunan Province, China (Grant No. LXBZZ2024222).
    [1]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Ruiz-Puigdollers A, Gamallo P 2017 Carbon 114 301Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [5]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [6]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [7]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [8]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191Google Scholar

    [9]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [10]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179Google Scholar

    [11]

    邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 72 038502Google Scholar

    Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502Google Scholar

    [12]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [13]

    Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015 Nat. Commun. 6 6324Google Scholar

    [14]

    Koga T, Nitta J, Takayanagi H, Datta S 2002 Phys. Rev. Lett. 88 126601Google Scholar

    [15]

    Zhang K B, Tan S H, Peng X F, Long M Q 2024 Chin. Phys. Lett. 41 097301Google Scholar

    [16]

    Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004 Phys. Rev. Lett. 93 117203Google Scholar

    [17]

    Sharma M, Wang S X, Nickel J H 1999 Phys. Rev. Lett. 82 616Google Scholar

    [18]

    Guan J, Chen W, Li Y F, Yu G T, Shi Z M, Huang X R, Sun C C, Chen Z F 2013 Adv. Funct. Mater. 23 1507Google Scholar

    [19]

    Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Sur. Sci. 519 146203Google Scholar

    [20]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [21]

    Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760Google Scholar

    [22]

    Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937Google Scholar

    [23]

    Kan E J, Li Z, Yang J, Hou J 2007 Appl. Phys. Lett. 91 243116Google Scholar

    [24]

    Rezapour M R, Yun J, Lee G, Kim K S 2016 JPCL 7 5049

    [25]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [26]

    Lopez-Urias F, Terrones M, Terrones H 2015 Carbon 84 317Google Scholar

    [27]

    Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023 Modell. Simul. Mater. Sci. Eng. 32 015008

    [28]

    Lou P, Lee J Y 2009 J. Phys. Chem. C 113 12637Google Scholar

    [29]

    李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强 2022 71 078501Google Scholar

    Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022 Acta Phys. Sin. 71 078501Google Scholar

    [30]

    Zeng J, Zhou Y H 2020 Physica E 118 113861Google Scholar

    [31]

    Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar

    [32]

    李晓波, 刘帅奇, 黄演, 马玉, 丁文策 2025 74 057101Google Scholar

    Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025 Acta Phys. Sin. 74 057101Google Scholar

    [33]

    Elasser A, Chow T P 2002 Proc. IEEE 90 969Google Scholar

    [34]

    Narushima T, Goto T, Hirai T, Iguchi Y 1997 Mater. Trans. JIM 38 821Google Scholar

    [35]

    Shi Z, Zhang Z, Kutana A, Yakobson B I 2015 ACS Nano 9 9802Google Scholar

    [36]

    Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013 J. Mater. Chem. C 1 2131Google Scholar

    [37]

    Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019 J. Comput. Electron. 18 407Google Scholar

    [38]

    Chabi S, Kadel K 2020 Nanomaterials 10 2226Google Scholar

    [39]

    Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010 Phys. Rev. B 81 075433Google Scholar

    [40]

    Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024 Physica B 695 416586Google Scholar

    [41]

    Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102Google Scholar

    [42]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [43]

    Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022 Physica E 138 115098Google Scholar

    [44]

    Taghizade N, Faizabadi E 2021 Mater. Sci. Eng. B 271 115253Google Scholar

    [45]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [46]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • 图 1  锯齿型SiC纳米带(a)下边界Si原子或(b)上边界C原子被双氢原子钝化的结构与自旋能带图; (c) SiC单链连接非对称双氢钝化锯齿型SiC纳米带上方、中上、中下和下方位置的分子器件模型, 阴影区域的L, R分别为器件的左右电极, 箭头分别表示P和AP磁构型的自旋方向

    Fig. 1.  Structure and spin band diagram of zigzag SiC nanoribbon with (a) lower boundary Si atoms or (b) upper boundary C atoms passivated by dihydrogen atoms; (c) device model of SiC single chain connected asymmetric dihydrogen passivated zigzag SiC nanoribbon at the upper, middle upper, middle lower and lower positions; L and R in the shaded area are the left and right electrodes of the device, and the arrows indicate the spin direction of P and AP magnetic configurations, respectively.

    图 2  4种分子器件在P磁构型的零偏压自旋输运谱和最大输运峰所处能量位置的输运本征态. Isovalue取固定值为0.2 (a) M1; (b) M2; (c) M3; (d) M4

    Fig. 2.  The zero-bias spin-resolved transmission spectra of four types of molecular devices and the transmission eigenstates at the energy position of the maximum transmission peak in P magnetic configuration. Isovalue is fixed on 0.2: (a) M1; (b) M2; (c) M3; (d) M4.

    图 3  4种分子器件在P磁构型的电流-电压曲线 (a) M1; (b) M2; (c) M3; (d) M4

    Fig. 3.  Current-voltage characteristics of four types of molecular devices in P-magnetic configuration: (a) M1; (b) M2; (c) M3; (d) M4.

    图 4  P磁构型下在–0. 5—0.5 V偏压范围的输运谱等高线图 (a) M1自旋向下; (b) M2自旋向下; (c) M3自旋向上; (d) M4自旋向下

    Fig. 4.  Contour maps of the transmission spectra in the bias voltage range of –0.5 V to 0.5 V for in P magnetic configuration: (a) M1 spin-down; (b) M2 spin-down; (c) M3 spin-up; (d) M4 spin-down.

    图 5  4种器件在AP磁构型的零偏压自旋输运谱和最大输运峰所处能量位置的输运本征态. Isovalue取固定值为0.2 (a) M1; (b) M2; (c) M3; (d) M4

    Fig. 5.  The zero-bias spin-resolved transmission spectra of four types of devices and the transmission eigenstates at the energy position of the maximum transmission peak in AP magnetic configuration. Isovalue is fixed on 0.2: (a) M1; (b) M2; (c) M3; (d) M4.

    图 6  4种器件在P磁构型的电流-电压特性 (a) M1; (b) M2; (c) M3; (d) M4

    Fig. 6.  Current-voltage characteristics of four types of devices in AP-magnetic configuration: (a) M1; (b) M2; (c) M3; (d) M4.

    图 7  4种器件在P磁构型的整流比

    Fig. 7.  Rectification ratios (RR) of four typs of devices in P-magnetic configuration.

    Baidu
  • [1]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Ruiz-Puigdollers A, Gamallo P 2017 Carbon 114 301Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [5]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [6]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [7]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [8]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191Google Scholar

    [9]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [10]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179Google Scholar

    [11]

    邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 72 038502Google Scholar

    Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502Google Scholar

    [12]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [13]

    Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015 Nat. Commun. 6 6324Google Scholar

    [14]

    Koga T, Nitta J, Takayanagi H, Datta S 2002 Phys. Rev. Lett. 88 126601Google Scholar

    [15]

    Zhang K B, Tan S H, Peng X F, Long M Q 2024 Chin. Phys. Lett. 41 097301Google Scholar

    [16]

    Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004 Phys. Rev. Lett. 93 117203Google Scholar

    [17]

    Sharma M, Wang S X, Nickel J H 1999 Phys. Rev. Lett. 82 616Google Scholar

    [18]

    Guan J, Chen W, Li Y F, Yu G T, Shi Z M, Huang X R, Sun C C, Chen Z F 2013 Adv. Funct. Mater. 23 1507Google Scholar

    [19]

    Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Sur. Sci. 519 146203Google Scholar

    [20]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [21]

    Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760Google Scholar

    [22]

    Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937Google Scholar

    [23]

    Kan E J, Li Z, Yang J, Hou J 2007 Appl. Phys. Lett. 91 243116Google Scholar

    [24]

    Rezapour M R, Yun J, Lee G, Kim K S 2016 JPCL 7 5049

    [25]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [26]

    Lopez-Urias F, Terrones M, Terrones H 2015 Carbon 84 317Google Scholar

    [27]

    Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023 Modell. Simul. Mater. Sci. Eng. 32 015008

    [28]

    Lou P, Lee J Y 2009 J. Phys. Chem. C 113 12637Google Scholar

    [29]

    李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强 2022 71 078501Google Scholar

    Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022 Acta Phys. Sin. 71 078501Google Scholar

    [30]

    Zeng J, Zhou Y H 2020 Physica E 118 113861Google Scholar

    [31]

    Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar

    [32]

    李晓波, 刘帅奇, 黄演, 马玉, 丁文策 2025 74 057101Google Scholar

    Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025 Acta Phys. Sin. 74 057101Google Scholar

    [33]

    Elasser A, Chow T P 2002 Proc. IEEE 90 969Google Scholar

    [34]

    Narushima T, Goto T, Hirai T, Iguchi Y 1997 Mater. Trans. JIM 38 821Google Scholar

    [35]

    Shi Z, Zhang Z, Kutana A, Yakobson B I 2015 ACS Nano 9 9802Google Scholar

    [36]

    Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013 J. Mater. Chem. C 1 2131Google Scholar

    [37]

    Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019 J. Comput. Electron. 18 407Google Scholar

    [38]

    Chabi S, Kadel K 2020 Nanomaterials 10 2226Google Scholar

    [39]

    Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010 Phys. Rev. B 81 075433Google Scholar

    [40]

    Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024 Physica B 695 416586Google Scholar

    [41]

    Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102Google Scholar

    [42]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [43]

    Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022 Physica E 138 115098Google Scholar

    [44]

    Taghizade N, Faizabadi E 2021 Mater. Sci. Eng. B 271 115253Google Scholar

    [45]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [46]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • [1] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运.  , 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究.  , 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究.  , 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [4] 田颖异, 王拴虎, 罗殿柄, 魏向洋, 金克新. 溶液旋涂法制备BixY3–xFe5O12薄膜的自旋输运特性.  , 2023, 72(1): 017201. doi: 10.7498/aps.72.20221183
    [5] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻.  , 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [6] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响.  , 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [7] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流.  , 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [8] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性.  , 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [9] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控.  , 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [10] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应.  , 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [11] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运.  , 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [12] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [13] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运.  , 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [14] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运.  , 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [15] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响.  , 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [16] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用.  , 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [17] 金莲, 朱林, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性.  , 2009, 58(12): 8577-8583. doi: 10.7498/aps.58.8577
    [18] 王如志, 袁瑞玚, 宋雪梅, 魏金生, 严辉. 半导体超晶格系统中的磁电调控电子自旋输运研究.  , 2009, 58(5): 3437-3442. doi: 10.7498/aps.58.3437
    [19] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运.  , 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究.  , 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  317
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-05-29
  • 上网日期:  2025-06-13
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map