搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体火箭羽流红外辐射特征预测的多相态Al2O3模型

张立功 白璐 李金录 郭立新

引用本文:
Citation:

固体火箭羽流红外辐射特征预测的多相态Al2O3模型

张立功, 白璐, 李金录, 郭立新

Multi-phase state Al2O3 model for predicting solid-roket plume infrared radiation characteristics

ZHANG Ligong, BAI Lu, LI Jinlu, GUO Lixin
cstr: 32037.14.aps.74.20250493
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 含铝固体推进剂以其可靠性、耐久性在战略战术导弹中得到广泛应用. 作为被动探测的主要手段, 准确识别排气羽流的红外辐射特征有助于快速预警和跟踪. 本文基于高温羽流环境下燃烧产物Al2O3晶体结构的变化, 提出了含多相态Al2O3的固体火箭羽流辐射计算模型. 采用球谐离散坐标法求解两相羽流的光谱辐射特性. 与忽略Al2O3颗粒相变的传统模型相比, 新模型与实验测量数据结果更加吻合, 进一步提高了计算精度. 利用该模型研究了不同含铝比例的羽流红外光谱辐射特性. 结果表明, 在1.7—2.0 μm范围内, 传统模型明显高估了低含铝情况的羽流辐射结果, 最大差异达67.2%. 在2.5—3.0 μm范围内, 随着含铝比例的增大, 两种模型之间的差异逐渐减小; 在4.0—4.5 μm范围内的颗粒相变对整体结果影响不明显, 平均相差7%左右. 所以有必要通过考虑羽流中颗粒的相态变化实现辐射特性的精确预测. 本研究结果可为固体火箭发动机的准确检测和识别提供理论依据和参考.
    Aluminum-doped propellants are widely used in strategic tactical missiles for their reliability, durability and adaptability. The accurate identification of infrared radiation characteristics of exhaust plumes, as a main means of passive detection, is helpful for rapid warning and tracking. In response to the shortcomings of traditional model that ignores the evolution of particle crystal phases, this paper proposes a radiation calculation model for multiphase Al2O3 containing the solid rocket plumes based on the changes of Al2O3 crystal structure in high temperature environments. The radiative transfer equation of the gas-solid two-phase plume is solved by using spherical harmonic discrete ordinate method (SHDOM). Compared with the classical method of simplifying the Al2O3 particles as single liquid phase particles, the model is more consistent with the results of experimental measurement data, which further improves the calculation accuracy. The infrared spectral radiation characteristics of plumes with different aluminum doping ratios are investigated using the model. The results show that under low aluminum doping ratios, the classical method significantly overestimates the plume radiation in the near-infrared band. At 1.7–2.0 μm, the maximum decrease is 67.2%; in the range of 2.5–3.0 μm, the difference in results between the two methods decreases from 21.6% to 3.6% with the increase of aluminum doping rate; and the particle phase transition in the range of 4.0–4.5 μm does not have much influence on the overall results, whose difference is about 7% on average. Therefore, it is necessary to accurately predict the radiation characteristics by considering the phase change of particles in the plume. These results contribute to the accurate detection and identification of solid rocket motors.
      通信作者: 白璐, blu@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U20B2059, 61875156, 62405230)和中央高校基本科研业务费专项(批准号: ZYTS25132)资助的课题.
      Corresponding author: BAI Lu, blu@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U20B2059, 61875156, 62405230) and the Fundamental Research Funds for the Central Universities (Grant No. ZYTS25132).
    [1]

    Lucas M, Brotton S J, Min A, Pantoya M L, Kaiser R I 2019 J. Phys. Chem. Lett. 10 5756Google Scholar

    [2]

    Zhang W C, Fan Z M, Shu Y, Ren P, Liu P J, Li L K, Ao W 2024 Aerosp. Sci. Technol. 149 109164Google Scholar

    [3]

    Lee Y R, Lee J W, Shin C M, Kim J W, Myong R 2022 J. Aircr. 59 1320Google Scholar

    [4]

    Shi L, Zhao G J, Yang Y Y, Gao D, Qin F, Wei X G, He G Q 2019 Prog. Aeronaut. Sci. 107 30Google Scholar

    [5]

    Orlandi O, Plaud M, Godfroy F, Larrieu S, Cesco N 2019 Acta Astronaut. 158 470Google Scholar

    [6]

    Liu M Y, Xiong L, Huang H X, Cai J, Zhao D, Li S P 2024 Therm. Sci. Eng. Prog. 49 102505Google Scholar

    [7]

    Nelson H F 1984 J. Spacecr. Rockets 21 425Google Scholar

    [8]

    Laredo D, Netzer D W 1993 J. Quant. Spectrosc. Radiat. Transfer 50 511Google Scholar

    [9]

    Alexeenko A, Gimelshein N, Levin D, Collins R J, Rao R, Candler G V, Gimelshein S F, Hong J S, Schilling T 2002 J. Thermophys. Heat Transfer 16 50Google Scholar

    [10]

    Boischot A, Roblin A, Hespel L, Dubois I, Prevot P, Smithson T 2006 Targets and Backgrounds XII: Characterization and Representation Orlando, Florida, USA, May 4, 2006 p195

    [11]

    Cai G B, Zhu D Q, Zhang X Y 2007 Aerosp. Sci. Technol. 11 473Google Scholar

    [12]

    Feng S J, Nie W S, Xie Q F, Duan L W 2007 39th AIAA Thermophysics Conference Miami, Florida, USA, June 25–28, 2007 p4415

    [13]

    申文涛, 董超, 朱定强, 蔡国飙 2012 航空动力学报 27 1874Google Scholar

    Shen W T, Dong C, Zhu D Q, Cai G B 2012 J. Aerosp. Power 27 1874Google Scholar

    [14]

    Zhang X Y, Chen H 2016 Chin. J. Aeronaut. 29 924Google Scholar

    [15]

    Rialland V, Guy A, Gueyffier D, Perez P, Roblin A, Smithson T 2016 Journal of Physics: Conference Series Albi, France, April 1–3, 2015 p12

    [16]

    Zhang D M, Bai L, Wang Y K, Lü Q, Zhang T J 2022 Infrared Phys. Technol. 122 104054Google Scholar

    [17]

    张腾, 牛青林, 柳云峰, 高文强, 董士奎 2024 兵工学报 45 2228Google Scholar

    Zhang T, Niu Q L, Liu Y F, Gao W Q, Dong S K 2024 Acta Armamentarii 45 2228Google Scholar

    [18]

    Bao X D, Yu X L, Wang Z H, Mao H X, Liu D 2020 Proced. Comput. Sci. 174 645Google Scholar

    [19]

    Bityukov V K, Petrov V A 2013 Appl. Phys. Res. 5 51Google Scholar

    [20]

    Plastinin Y, Sipatchev H, Karabadzhak G, Khmelinin B, Khlebnikov A, Shishkin Y 2000 38th Aerospace Sciences Meeting and Exhibit Reno, USA, January 10–13, 2000 p735

    [21]

    Anfimov N, Karabadyak G, Khmelinin B, Plastinin Y, Rodionov A 1993 28th Thermophysics Conference Orlando, Florida, USA, July 6–9, 1993 p2818

    [22]

    Xu Y Y, Lu B, Li J Y, Li J L, Gao P H 2020 Opt. Express 28 17Google Scholar

    [23]

    Li J Y, Bai L, Wu Z S, Guo L X, Gong Y 2017 J. Quant. Spectrosc. Radiat. Transfer 202 233Google Scholar

    [24]

    Evans K F 1998 J. Atmos. Sci. 55 429Google Scholar

    [25]

    Malkmus W 1967 J. Opt. Soc. Am. 57 323Google Scholar

    [26]

    Young S J 1977 J. Quant. Spectrosc. Radiat. Transfer 18 1Google Scholar

    [27]

    Rothman L S, Gordon I, Barber R, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar

    [28]

    Hulst H C, van de Hulst H C 1981 Light Scattering by Small Particles (Courier Corporation) pp4–12

    [29]

    Bohren CF, Huffman DR 2008 Absorption and Scattering of Light by Small Particles (John Wiley & Sons) pp83–129

    [30]

    Gossé S, Sarou K V, Véron E, Millot F, Rifflet J C, Simon P 2003 36th AIAA Thermophysics Conference Orlando, Florida, USA, June 23–26, 2003 p3649

    [31]

    Hespel L, Delfour A, Gosse S, Millot F 2003 36th AIAA Thermophysics Conference Orlando, Florida, USA, June 23–26, 2003 p3650

    [32]

    Dombrovsky L A, Baillis D 2010 Thermal Radiation in Disperse Systems: An Engineering Approach (New York: Begell House) pp64–221

    [33]

    Mishchenko M I 2018 OSA Continuum 1 243Google Scholar

    [34]

    包醒东, 余西龙, 王振华, 毛宏霞, 肖志河 2021 推进技术 42 3Google Scholar

    Bao X D, Yu X L, Wang Z H, Mao H X, Liu D, Xiao Z H 2021 J. Propul. Technol. 42 3Google Scholar

    [35]

    Avital G, Cohen Y, Gamss L, Kanelbaum, Y, Macales J, Trieman B, Yaniv S, Lev M, Stricker J, Sternlieb A 2001 J. Thermophys. Heat Transfer 15 377Google Scholar

    [36]

    Hermsen R 1981 J. Spacecr. Rockets 18 483Google Scholar

  • 图 1  固体推进剂羽流多相态Al2O3模型示意图 (a)羽流的主要辐射产物; (b)气固两相流的辐射传输求解; (c) Al2O3颗粒的多种相态

    Fig. 1.  Schematic diagram of multiphase state Al2O3 model for solid propellent plume: (a) Main radiation product of the plume; (b) radiation transfer of gas-solid two-phase flow; (c) Al2O3 particles in multiple phases.

    图 2  改进模型与传统模型的比较

    Fig. 2.  Comparison of improved and classical models.

    图 3  可见光实验图像[34]

    Fig. 3.  Images of experiments visible[34].

    图 4  羽流结果与文献[34]比较 (a)文献结果; (b)计算结果

    Fig. 4.  Comparison of plume results with Ref. [34]: (a) Reference result; (b) calculate result.

    图 5  与文献[34]中的计算结果和测量值比较

    Fig. 5.  Comparison with measurement and calculated in the Ref. [34].

    图 6  与实验结果比较 (a)波段辐射强度; (b)相对误差

    Fig. 6.  Comparison with experimental results: (a) Band radiation intensity; (b) relative error.

    图 7  不同含铝情况的温度场及对应的粒子总质量密度 (a) Al-5%; (b) Al-10%; (c) Al-15%; (d) Al-20%

    Fig. 7.  Temperature field and corresponding particle density for different aluminum contents: (a) Al-5%; (b) Al-10%; (c) Al-15%; (d) Al-20%.

    图 8  不同含铝情况下多相态模型与传统模型的羽流红外光谱辐射强度对比 (a) Al-5%; (b) Al-10%; (c) Al-15%; (d) Al-20%

    Fig. 8.  Comparison of plume infrared spectral radiation intensity between the multiphase model and the traditional model under different aluminum contents: (a) Al-5%; (b) Al-10%; (c) Al-15%; (d) Al-20%.

    图 9  不同含铝情况下多相态模型与传统模型在1.7—2.0 μm波段排气羽流的辐射亮度对比 (a)传统模型; (b)多相态模型

    Fig. 9.  Radiance comparison of exhaust plumes at 1.7–2.0 μm band between multiphase model and traditional model under different aluminum contents: (a) Traditional model; (b) multiphase model.

    图 11  不同含铝情况下多相态模型与传统模型在4.0—4.5 μm波段排气羽流的辐射亮度对比 (a)传统模型; (b)多相态模型

    Fig. 11.  Radiance comparison of exhaust plumes at 4.0–4.5 μm band between multiphase model and traditional model under different aluminum contents: (a) Traditional model; (b) multiphase model.

    图 10  不同含铝情况下多相态模型与传统模型在2.5—3.0 μm波段排气羽流的辐射亮度对比 (a)传统模型; (b)多相态模型

    Fig. 10.  Radiance comparison of exhaust plumes at 2.5–3.0 μm band between multiphase model and traditional model under different aluminum contents: (a) Traditional model; (b) multiphase model.

    表 1  Al2O3相变参数[20]

    Table 1.  Al2O3 phase transition parameter[20].

    参数液相γα
    a/K–22.1 × 10–72.1 × 10–72.1 × 10–7
    E0/μm–14.4726.256.82
    f/μm–11.784 × 10–41.3 × 10–38.8 × 10–4
    Epol/μm–10.530.53
    b/μm–12.5 × 10–22.5 × 10–22.5 × 10–2
    c/(K–1·μm)680068006800
    d/μm–12.02.01.6
    e/μm–10.950.950.95
    h/μm–17.93 × 10–47.93 × 10–4
    ω0/μm–113331333
    下载: 导出CSV

    表 2  双基推进剂燃烧室参数

    Table 2.  Parameter of combustion chamber for double-base propellant.

    压强
    /MPa
    温度
    /K
    燃烧室组分的质量分数
    H2O CO2 CO N2 H2 Al2O3
    7.4 2884 0.1084 0.2462 0.3850 0.1630 0.0140 0.0835
    下载: 导出CSV

    表 3  不同含铝比例的燃烧室中各组分参数

    Table 3.  Mass fraction of each component in the combustion chamber at different doping ratios.

    工况铝含量
    /%
    燃烧室组分的质量分数
    H2OCO2COHClAl2O3
    150.240.130.170.2440.09
    2100.200.090.180.2350.17
    3150.160.060.190.2250.24
    4200.120.040.200.2160.31
    下载: 导出CSV

    表 4  不同含铝情况下多相态模型与传统模型的红外波段辐射强度差异

    Table 4.  Difference of infrared band radiation intensity between the multiphase model and the traditional model under different aluminum contents.

    铝含量
    /%
    红外波段辐射强度差异/%
    1.7—2.0 μm2.5—3.0 μm4.0—4.5 μm
    547.218.62.7
    1067.221.613.1
    153.410.17.5
    201.83.64.8
    下载: 导出CSV
    Baidu
  • [1]

    Lucas M, Brotton S J, Min A, Pantoya M L, Kaiser R I 2019 J. Phys. Chem. Lett. 10 5756Google Scholar

    [2]

    Zhang W C, Fan Z M, Shu Y, Ren P, Liu P J, Li L K, Ao W 2024 Aerosp. Sci. Technol. 149 109164Google Scholar

    [3]

    Lee Y R, Lee J W, Shin C M, Kim J W, Myong R 2022 J. Aircr. 59 1320Google Scholar

    [4]

    Shi L, Zhao G J, Yang Y Y, Gao D, Qin F, Wei X G, He G Q 2019 Prog. Aeronaut. Sci. 107 30Google Scholar

    [5]

    Orlandi O, Plaud M, Godfroy F, Larrieu S, Cesco N 2019 Acta Astronaut. 158 470Google Scholar

    [6]

    Liu M Y, Xiong L, Huang H X, Cai J, Zhao D, Li S P 2024 Therm. Sci. Eng. Prog. 49 102505Google Scholar

    [7]

    Nelson H F 1984 J. Spacecr. Rockets 21 425Google Scholar

    [8]

    Laredo D, Netzer D W 1993 J. Quant. Spectrosc. Radiat. Transfer 50 511Google Scholar

    [9]

    Alexeenko A, Gimelshein N, Levin D, Collins R J, Rao R, Candler G V, Gimelshein S F, Hong J S, Schilling T 2002 J. Thermophys. Heat Transfer 16 50Google Scholar

    [10]

    Boischot A, Roblin A, Hespel L, Dubois I, Prevot P, Smithson T 2006 Targets and Backgrounds XII: Characterization and Representation Orlando, Florida, USA, May 4, 2006 p195

    [11]

    Cai G B, Zhu D Q, Zhang X Y 2007 Aerosp. Sci. Technol. 11 473Google Scholar

    [12]

    Feng S J, Nie W S, Xie Q F, Duan L W 2007 39th AIAA Thermophysics Conference Miami, Florida, USA, June 25–28, 2007 p4415

    [13]

    申文涛, 董超, 朱定强, 蔡国飙 2012 航空动力学报 27 1874Google Scholar

    Shen W T, Dong C, Zhu D Q, Cai G B 2012 J. Aerosp. Power 27 1874Google Scholar

    [14]

    Zhang X Y, Chen H 2016 Chin. J. Aeronaut. 29 924Google Scholar

    [15]

    Rialland V, Guy A, Gueyffier D, Perez P, Roblin A, Smithson T 2016 Journal of Physics: Conference Series Albi, France, April 1–3, 2015 p12

    [16]

    Zhang D M, Bai L, Wang Y K, Lü Q, Zhang T J 2022 Infrared Phys. Technol. 122 104054Google Scholar

    [17]

    张腾, 牛青林, 柳云峰, 高文强, 董士奎 2024 兵工学报 45 2228Google Scholar

    Zhang T, Niu Q L, Liu Y F, Gao W Q, Dong S K 2024 Acta Armamentarii 45 2228Google Scholar

    [18]

    Bao X D, Yu X L, Wang Z H, Mao H X, Liu D 2020 Proced. Comput. Sci. 174 645Google Scholar

    [19]

    Bityukov V K, Petrov V A 2013 Appl. Phys. Res. 5 51Google Scholar

    [20]

    Plastinin Y, Sipatchev H, Karabadzhak G, Khmelinin B, Khlebnikov A, Shishkin Y 2000 38th Aerospace Sciences Meeting and Exhibit Reno, USA, January 10–13, 2000 p735

    [21]

    Anfimov N, Karabadyak G, Khmelinin B, Plastinin Y, Rodionov A 1993 28th Thermophysics Conference Orlando, Florida, USA, July 6–9, 1993 p2818

    [22]

    Xu Y Y, Lu B, Li J Y, Li J L, Gao P H 2020 Opt. Express 28 17Google Scholar

    [23]

    Li J Y, Bai L, Wu Z S, Guo L X, Gong Y 2017 J. Quant. Spectrosc. Radiat. Transfer 202 233Google Scholar

    [24]

    Evans K F 1998 J. Atmos. Sci. 55 429Google Scholar

    [25]

    Malkmus W 1967 J. Opt. Soc. Am. 57 323Google Scholar

    [26]

    Young S J 1977 J. Quant. Spectrosc. Radiat. Transfer 18 1Google Scholar

    [27]

    Rothman L S, Gordon I, Barber R, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar

    [28]

    Hulst H C, van de Hulst H C 1981 Light Scattering by Small Particles (Courier Corporation) pp4–12

    [29]

    Bohren CF, Huffman DR 2008 Absorption and Scattering of Light by Small Particles (John Wiley & Sons) pp83–129

    [30]

    Gossé S, Sarou K V, Véron E, Millot F, Rifflet J C, Simon P 2003 36th AIAA Thermophysics Conference Orlando, Florida, USA, June 23–26, 2003 p3649

    [31]

    Hespel L, Delfour A, Gosse S, Millot F 2003 36th AIAA Thermophysics Conference Orlando, Florida, USA, June 23–26, 2003 p3650

    [32]

    Dombrovsky L A, Baillis D 2010 Thermal Radiation in Disperse Systems: An Engineering Approach (New York: Begell House) pp64–221

    [33]

    Mishchenko M I 2018 OSA Continuum 1 243Google Scholar

    [34]

    包醒东, 余西龙, 王振华, 毛宏霞, 肖志河 2021 推进技术 42 3Google Scholar

    Bao X D, Yu X L, Wang Z H, Mao H X, Liu D, Xiao Z H 2021 J. Propul. Technol. 42 3Google Scholar

    [35]

    Avital G, Cohen Y, Gamss L, Kanelbaum, Y, Macales J, Trieman B, Yaniv S, Lev M, Stricker J, Sternlieb A 2001 J. Thermophys. Heat Transfer 15 377Google Scholar

    [36]

    Hermsen R 1981 J. Spacecr. Rockets 18 483Google Scholar

  • [1] 王明军, 于记华, 白亮亮, 周熠铭. 不同相对湿度条件下复杂外混合气溶胶粒子群的光学特性.  , 2025, 74(6): 064203. doi: 10.7498/aps.74.20241140
    [2] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变.  , 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [3] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究.  , 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [4] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究.  , 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [5] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究.  , 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [8] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究.  , 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真.  , 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [10] 徐婷婷, 李毅, 陈培祖, 蒋蔚, 伍征义, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于AZO/VO2/AZO结构的电压诱导相变红外光调制器.  , 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [11] 王小伍, 徐海红. 多元醇二元体系固-固相变机理的研究.  , 2014, 63(13): 136501. doi: 10.7498/aps.63.136501
    [12] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究.  , 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [13] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征.  , 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [14] 王小伍, 徐海红. 多元醇固—固相变机理的研究.  , 2011, 60(3): 030507. doi: 10.7498/aps.60.030507
    [15] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究.  , 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [16] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用.  , 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [17] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变.  , 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [18] 石筑一, 吉世印. 微观核芯+两准粒子模型中热核148—158Sm的比热容及其相变.  , 2003, 52(1): 42-47. doi: 10.7498/aps.52.42
    [19] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆.  , 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究.  , 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
计量
  • 文章访问数:  363
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-16
  • 修回日期:  2025-05-28
  • 上网日期:  2025-06-12
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map