搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据挖掘技术的稀土磁性材料研究进展

刘丹 李渊 孙若瑄 漆星 沈保根

引用本文:
Citation:

基于数据挖掘技术的稀土磁性材料研究进展

刘丹, 李渊, 孙若瑄, 漆星, 沈保根

Research progress of rare earth magnetic materials based on machine learning

LIU Dan, LI Yuan, SUN Ruoxuan, QI Xing, SHEN Baogen
cstr: 32037.14.aps.74.20250431
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 稀土元素的原子结构特殊, 具有内层未成对4f轨道电子多、原子磁矩高、自旋轨道耦合作用强的性质, 故其电子能级极为丰富, 易形成多种价态、多种配位的化合物, 通常表现出特殊的磁学性质和丰富的磁畴结构, 成为高新技术产业发展的关键材料. 这类材料中复杂的磁结构形式、多样的磁耦合类型及多种直接或间接的磁交换作用, 为开发新型功能器件提供便利的同时, 也对基础研究提出了严峻挑战. 随着数据挖掘技术的快速发展, 大数据和人工智能的出现给研究人员提供了一个新的选择, 可以高效地分析大量实验和计算数据, 从而加速稀土磁性材料的研究与开发. 本文围绕稀土永磁材料、稀土磁致冷材料、稀土磁致伸缩材料等, 详细阐述了数据挖掘技术在其性能预测、成分与工艺优化、微观结构分析等方面的应用进展, 深入探讨了当前面临的挑战, 并对未来发展趋势进行展望, 为推动数据挖掘技术与稀土磁性材料研究的深度融合提供理论基础.
    Rare-earth elements possess unique atomic structures characterized by multiple unpaired 4f orbital electrons in inner shells, high atomic magnetic moments, and strong spin-orbit coupling. These attributes endow them with rich electronic energy levels, enabling them to form compounds with different valence states and coordination environments. Consequently, rare-earth materials typically exhibit excellent magnetic properties and complex magnetic domain structures, making them critical for the development of high-tech industries. The intricate magnetic configurations, different types of magnetic coupling, and direct/indirect magnetic exchange interactions in these materials not only facilitate the development of novel functional devices but also pose significant challenges to fundamental research. With the rapid advancement of data mining techniques, the emergence of big data and artificial intelligence provides researchers with a new method to efficiently analyze vast experimental and computational datasets, thereby accelerating the exploration and development of rare-earth magnetic materials. This work focuses on rare-earth permanent magnetic materials, rare-earth magnetocaloric materials, and rare-earth magnetostrictive materials, detailing the application progress of data mining techniques in property prediction, composition and process optimization, and microstructural analysis. This work also delves into the current challenges and future trends, aiming to provide a theoretical foundation for deepening the integration of data mining technologies with rare-earth magnetic material research.
      通信作者: 刘丹, liudan@btbu.edu.cn ; 沈保根, shenbg@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFA1610400)和国家自然科学基金(批准号: 52088101, 52371169)资助的课题.
      Corresponding author: LIU Dan, liudan@btbu.edu.cn ; SHEN Baogen, shenbg@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1610400) and the National Natural Science Foundation of China (Grant Nos. 52088101, 52371169).
    [1]

    中华人民共和国国务院2024-06-29 稀土管理条例 https://www.gov.cn/zhengce/zhengceku/202406/content_6960153.htm

    [2]

    中华人民共和国国务院 2023-12-26中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 https://www.gov.cn/zhuanti/shisiwuguihua/sdb.htm

    [3]

    Tai D Q, Li B, Xue H Y, Zheng T, Wu J G 2024 Acta Mater. 262 119411Google Scholar

    [4]

    Swamynadhan M J, O’Hara A, Ghosh S, Pantelides S T 2024 Adv. Funct. Mater. 34 2400195Google Scholar

    [5]

    Ding S L, Kang M G, Legrand W, Gambardella P 2024 Phys. Rev. Lett. 132 236702Google Scholar

    [6]

    邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜 2024 73 210701Google Scholar

    Deng X W, Wu L Y, Zhao R, Wang J O, Zhao L N 2024 Acta Phys. Sin. 73 210701Google Scholar

    [7]

    Möller J J, Körner W, Krugel G, Urban D F, Elsässer C 2018 Acta Mater. 153 53Google Scholar

    [8]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547Google Scholar

    [9]

    张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清 2024 73 230201Google Scholar

    Zhang Q, Tan W, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 Acta Phys. Sin. 73 230201Google Scholar

    [10]

    Wang Z, Sun Z H, Yin H, Liu X H, Wang J L, Zhao H T, Pang C H, Wu T, Li S Z, Yin Z Y, Yu X F 2022 Adv. Mater. 34 2104113Google Scholar

    [11]

    彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701Google Scholar

    Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lü D S 2019 Acta Phys. Sin. 68 130701Google Scholar

    [12]

    李锐 2018博士学位论文(北京: 中国科学院大学)

    Li R 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [13]

    Kovacs A, Fischbacher J, Oezelt H, Kornell A, Ali Q, Gusenbauer M, Yano M, Sakuma N, Kinoshita A, Shoji T, Kato A, Hong Y, Grenier S, Devillers T, Dempsey N M, Fukushima T, Akai H, Kawashima N, Miyake T, Schrefl T 2023 Front. Mater. 9 1094055Google Scholar

    [14]

    Hosokawa H, Calvert E L, Shimojima K 2021 J. Magn. Magn. Mater. 526 167651Google Scholar

    [15]

    Guo K, Lu H, Zhao Z, Tang F W, Wang H B, Song X Y 2022 Comp. Mater. Sci. 205 111232Google Scholar

    [16]

    Wen J T, Hu H G, An J S, Han T, Hu J F 2024 J. Supercond. Nov. Magn. 37 1443Google Scholar

    [17]

    Liu R S, Wang L C, Xu Z Y, Qin C Y, Li Z Y, Yu X, Liu D, Gong H Y, Zhao T Y, Sun J R, Hu F X, Shen B G 2022 Mater. Today Commun. 32 103996Google Scholar

    [18]

    Nguyen D N, Pham T L, Nguyen V C, Kino H, Miyake T, Dam H C 2019 J. Phys. Mater. 2 034009Google Scholar

    [19]

    Xu G J, Cheng F, Lu H, Hou C, Song X Y 2024 Acta Mater. 274 120026Google Scholar

    [20]

    Halder A, Rom S, Ghosh A, Dasgupta T S 2020 Phys. Rev. Appl. 14 034024Google Scholar

    [21]

    Lambard G, Sasakib T T, Sodeyama K, Ohkubo T, Hono K 2022 Scripta Mater. 209 114341Google Scholar

    [22]

    Lu S F, Liu Y L, Yin Q S, Chen J F, Wu J, Li J, Zhan P J, Chen Z C 2024 J. Eur. Ceram. Soc. 44 5677Google Scholar

    [23]

    Choudhary A K, Grubesa T, Jansche A, Bernthaler T, Goll D, Schneider G 2024 Acta Mater. 264 119563Google Scholar

    [24]

    Kusne A G, Gao T, Mehta A, Ke L Q, Nguyen M C, Ho K M, Antropov V, Wang C Z, Kramer M J, Long C, Takeuchi I 2014 Sci. Rep. 4 63Google Scholar

    [25]

    Nieves P, Arapan S, Hadjipanayis G C, Niarchos D, Barandiaran J M, Cuesta-López S 2016 Phys. Status Solidi C 13 942Google Scholar

    [26]

    Xia W Y, Sakurai M, Balasubramanian B, Liao T, Wang R H, Zhang C, Sun H J, Ho K M, Chelikowsky J R, Sellmyer D J, Wang C Z 2022 Proc. Natl. Acad. Sci. 119 2204485119Google Scholar

    [27]

    Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chin. Phys. B 27 067503Google Scholar

    [28]

    张博 2018 博士学位论文 (北京: 中国科学院大学)

    Zhang B 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [29]

    Ucar H, Paudyal D, Choudhary K 2022 Comp. Mater. Sci. 209 111414Google Scholar

    [30]

    Alqahtani A 2024 Sustainability 16 1542Google Scholar

    [31]

    Shamsah S M I 2024 Int. J. Refrig. 168 122Google Scholar

    [32]

    Zhao Q, Yan K L, Cui Z, Wen B Y, Xue F, Li J T, Guo J N, Xu A, Qiao K M, Ye R C, Long Y, Zhang D W, Luo H, Taskaev S, Zhang H 2023 Corros. Sci. 216 111115Google Scholar

    [33]

    Gong J H, Zhang Z M, Zhang C L, Hu P Q, Zhou C, Wang D H, Yang S 2024 Rare Met. 43 2251Google Scholar

    [34]

    Hu P Q, Zhou C, Zhang R S, Ding S D, Guo Y J, Wang B, Xue D Z, Ma Y Z, Dai Z Y, Zhang Y, Tian F H, Yang S 2025 Mater. Design 252 113799Google Scholar

    [35]

    Foggiatto A L, Mizutori Y, Yamazaki T, Sato S, Masuzawa K, Nagaoka R, Taniwaki M, Fujieda S, Suzuki S, Ishiyama K, Fukuda T, Igarashi Y, Mitsumata C, Kotsugi M 2023 IEEE T. Magn. 59 2501604

    [36]

    黎威, 龙连春, 刘静毅, 杨洋 2022 71 060202Google Scholar

    Li W, Long L C, Liu J Y, Yang Y 2022 Acta Phys. Sin. 71 060202Google Scholar

    [37]

    Liu D, Liu Z X, Zhang J E, Yin Y N, Xi J F, Wang L C, Xiong J F, Zhang M, Zhao T Y, Jin J Y, Sun J R, Hu F X, Shen J, Shen B G 2023 Research 6 0082Google Scholar

    [38]

    Liu D, Song J H, Liu Z X, Zhang J E, Chen W Q, Yin Y N, Xi J F, Zheng X Q, Hao J Z, Zhao T Y, Hu F X, Sun J R, Shen B G 2025 Mater. Design 251 113710Google Scholar

    [39]

    Li X, Shek C H, Liaw P K, Shan G C 2024 Prog. Mater. Sci. 146 101332Google Scholar

  • 图 1  (a) 不同机器学习算法的训练集预测结果对比; (b) 钕铁硼快淬带矫顽力Hcj和最大磁能积(BH)max的预测图及其性价比等高线[12]

    Fig. 1.  (a) Predicted scatter plots of different machine learning algorithms; (b) predicted maps of Hcj and (BH)max of Nd-Fe-B meltspun magnets, and their corresponding cost performances[12].

    图 2  原子特征之间的Pearson相关系数热图[15]

    Fig. 2.  Heatmap of the Pearson correlation coefficients between atomic characteristics[15].

    图 3  基于高通度实验和机器学习的La-Co取代锶六铁氧体磁性能预测与组成设计[17]

    Fig. 3.  Magnetic properties prediction and composition design of La-Co substitution Sr-hexaferrite based on high-through experiments and machine learning[17].

    图 4  (a) 不同Sm-Co合金的热重分析微分曲线; (b) 实验测量和逻辑回归模型预测的Tc[19]

    Fig. 4.  (a) DTG curves of the Sm-Cobased alloys prepared in experiments; (b) the Tc values from experimental measurements and from the model predictions[19].

    图 5  随机森林算法对稀土过渡族金属居里温度Tc的预测值、绝对误差分布和相对误差分布[20]

    Fig. 5.  Model output from Random Forest algorithm for Tc, absolute error, and relative error[20].

    图 6  支持向量回归模型对Ba1–xLaxFe12–yMnyO19铁氧体 (a) Ms; (b) Hc; (c) K1; (d) Ha的预测图[22]

    Fig. 6.  Prediction diagram of (a) Ms, (b) Hc, (c) K1 and (d) Ha of Ba1–xLaxFe12–yMnyO19 ferrite by SVR[22].

    图 7  支持向量回归模型(SVR)在μ0M, K1Ef上的十折交叉验证结果[7]

    Fig. 7.  Results of the tenfold cross validation of the SVR models for μ0M, K1, and Ef [7].

    图 8  将均值漂移理论应用于成分扩展晶圆的衍射图谱, 用于快速分析相分布[24]

    Fig. 8.  Mean shift theory as applied to diffraction patterns taken from a composition spread wafer for rapid phase distribution analysis[24].

    图 9  ML-AGA-DFT反馈循环中获得的7种有应用潜力的永磁体Fe-Co-B化合物的晶体结构[26]

    Fig. 9.  Crystal structures of seven promising Fe-Co-B compounds for permanent magnet obtained from our ML-AGA-DFT predictions[26].

    图 10  (a) 0—2 T和(c) 0—5 T下最大磁熵变(ΔSM)max的数据分布; (b) 0—2 T和(d) 0—5 T预测模型的训练性能表现, 红星为最佳参数组合[28]

    Fig. 10.  Data distribution for (ΔSM)max at (a) 0–2 T and (c) 0–5 T; performances of prediction models at (b) 0–2 T and (d) 0–5 T trained with different parameters combinations, respectively[28].

    图 11  随机森林模型对材料磁熵变–ΔSM的预测结果[29] (a) 数据集中所有材料–ΔSM的实验值和预测值对比; (b) 测试集中按材料类型细分的实验–ΔSM与预测对比

    Fig. 11.  RF model for –ΔSM of magnetocaloric materials[29]: (a) Experimental vs predicted –ΔSM for the materials in dataset; (b) experimental vs predicted –ΔSM in the test set by material type breakdown.

    图 12  单隐层模型SIL的泛化能力评估[30] (a) 训练样本的相关系数; (b) 训练样本的平均绝对误差; (c) 训练样本的均方根误差; (d) 测试样本的相关系数; (e) 测试样本的平均绝对误差; (f) 测试样本的均方根误差

    Fig. 12.  Generalization capacity evaluation of developed SIL-based models[30]: (a) Training samples coefficient of correlation; (b) training samples mean absolute error; (c) training samples root mean square error; (d) testing samples coefficient of correlation; (e) testing samples mean absolute error; (f) testing samples root mean square error.

    图 13  机器学习模型在预测稀土基三元金属间化合物时的性能比较[31] (a) 均方根误差; (b) 相关系数; (c) 平均绝对误差

    Fig. 13.  Performance of the intelligent models and their comparison for testing ternary intermetallic magnetocaloric compounds[31]: (a) Root mean square error; (b) correlation coefficient; (c) mean absolute error.

    图 14  ML建模过程及缓蚀剂最佳配比的求解[32] (a) 酸碱度pH算法选择; (b) 腐蚀电流密度J算法选择; (c) 基于线性回归算法pH值的预测值与测量值对比; (d) 基于线性回归算法的J1值; (e) J2值的预测值与测量值对比

    Fig. 14.  ML modeling process and solving the optimal composition of corrosion inhibitor[32]: (a) The pH model algorithm selection; (b) J model algorithm selection; (c) measured-predicted pH value plot for LR algorithm; (d) measured-predicted J1 value plot for LR algorithm; (e) measured-predicted J2 value plot for LR algorithm.

    图 15  (a) 三步特征选择流程图; (b) 随机森林特征选择; (c) 穷举筛选[34]

    Fig. 15.  (a) Flowchart of three-step feature selection; (b) feature selection by random forest; (c) exhaustive screening[34].

    图 17  (a) 10种机器学习算法对磁性合金Ms和硬度的均方根误差RMSE; (b), (c) Ms和硬度H的预测值与实验值对比[39]

    Fig. 17.  (a) RMSE score of models based on ten ML algorithms; (b), (c) precietd values of Ms and hardness compared with the corresponding experimental values[39].

    图 16  神经网络在预测材料是否具有(a)—(c) 非线性磁结构和(d)—(f) 斯格明子结构的表现[38]

    Fig. 16.  Performance of Neural Networks in predicting whether a material has (a)–(c) nonlinear magnetic structure and (d)–(f) Skoming substructure[38].

    表 1  常用的机器学习算法的优势与缺陷

    Table 1.  Advantages and disadvantages of commonly used machine learning algorithms.

    模型 优势 不足
    MLR 简单易懂, 计算效率高; 可解释性强, 参数直接反映特征重要性 无法捕捉非线性关系; 对异常值敏感
    SVM 擅长处理高维空间中的非线性分类; 小样本数据表现优异 核函数选择依赖经验; 计算成本高, 扩展性差
    DT 无需数据标准化; 可视化清晰; 擅长处理分类问题 易过拟合, 需剪枝优化; 对连续特征处理能力有限
    RF 抗过拟合能力强, 适合高维数据; 可输出特征重要性, 便于特征
    选择
    计算复杂度较高; 对小样本数据表现不佳
    K-means 无需标注数据, 自动发现数据模式; 计算效率高 需要预先指定聚类数
    GA 全局搜索能力, 避免局部最优; 并行处理, 适合高维问题 计算成本高; 复杂问题的收敛速度慢; 依赖高质量
    的训练数据
    粒子群优化
    算法(PSO)
    适用于目标函数不连续的场景; 参数少, 易于与实验工具集成 收敛速度慢; 参数敏感性; 局部搜索能力弱
    PCA 有效降维, 保留关键信息; 可视化高维数据的潜在结构 无法捕捉非线性关系; 忽略特征间的相关性
    ANN 强大的非线性建模能力; 适用于复杂模式识别, 如图像、
    分子结构
    需要大量数据和计算资源; 可解释性差, 存在
    “黑箱” 问题
    CNN 无需人工设计特征; 擅长高维数据处理; 鲁棒性强 计算资源需求大; 数据依赖性; 解释性差
    下载: 导出CSV
    Baidu
  • [1]

    中华人民共和国国务院2024-06-29 稀土管理条例 https://www.gov.cn/zhengce/zhengceku/202406/content_6960153.htm

    [2]

    中华人民共和国国务院 2023-12-26中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 https://www.gov.cn/zhuanti/shisiwuguihua/sdb.htm

    [3]

    Tai D Q, Li B, Xue H Y, Zheng T, Wu J G 2024 Acta Mater. 262 119411Google Scholar

    [4]

    Swamynadhan M J, O’Hara A, Ghosh S, Pantelides S T 2024 Adv. Funct. Mater. 34 2400195Google Scholar

    [5]

    Ding S L, Kang M G, Legrand W, Gambardella P 2024 Phys. Rev. Lett. 132 236702Google Scholar

    [6]

    邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜 2024 73 210701Google Scholar

    Deng X W, Wu L Y, Zhao R, Wang J O, Zhao L N 2024 Acta Phys. Sin. 73 210701Google Scholar

    [7]

    Möller J J, Körner W, Krugel G, Urban D F, Elsässer C 2018 Acta Mater. 153 53Google Scholar

    [8]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547Google Scholar

    [9]

    张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清 2024 73 230201Google Scholar

    Zhang Q, Tan W, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 Acta Phys. Sin. 73 230201Google Scholar

    [10]

    Wang Z, Sun Z H, Yin H, Liu X H, Wang J L, Zhao H T, Pang C H, Wu T, Li S Z, Yin Z Y, Yu X F 2022 Adv. Mater. 34 2104113Google Scholar

    [11]

    彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701Google Scholar

    Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lü D S 2019 Acta Phys. Sin. 68 130701Google Scholar

    [12]

    李锐 2018博士学位论文(北京: 中国科学院大学)

    Li R 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [13]

    Kovacs A, Fischbacher J, Oezelt H, Kornell A, Ali Q, Gusenbauer M, Yano M, Sakuma N, Kinoshita A, Shoji T, Kato A, Hong Y, Grenier S, Devillers T, Dempsey N M, Fukushima T, Akai H, Kawashima N, Miyake T, Schrefl T 2023 Front. Mater. 9 1094055Google Scholar

    [14]

    Hosokawa H, Calvert E L, Shimojima K 2021 J. Magn. Magn. Mater. 526 167651Google Scholar

    [15]

    Guo K, Lu H, Zhao Z, Tang F W, Wang H B, Song X Y 2022 Comp. Mater. Sci. 205 111232Google Scholar

    [16]

    Wen J T, Hu H G, An J S, Han T, Hu J F 2024 J. Supercond. Nov. Magn. 37 1443Google Scholar

    [17]

    Liu R S, Wang L C, Xu Z Y, Qin C Y, Li Z Y, Yu X, Liu D, Gong H Y, Zhao T Y, Sun J R, Hu F X, Shen B G 2022 Mater. Today Commun. 32 103996Google Scholar

    [18]

    Nguyen D N, Pham T L, Nguyen V C, Kino H, Miyake T, Dam H C 2019 J. Phys. Mater. 2 034009Google Scholar

    [19]

    Xu G J, Cheng F, Lu H, Hou C, Song X Y 2024 Acta Mater. 274 120026Google Scholar

    [20]

    Halder A, Rom S, Ghosh A, Dasgupta T S 2020 Phys. Rev. Appl. 14 034024Google Scholar

    [21]

    Lambard G, Sasakib T T, Sodeyama K, Ohkubo T, Hono K 2022 Scripta Mater. 209 114341Google Scholar

    [22]

    Lu S F, Liu Y L, Yin Q S, Chen J F, Wu J, Li J, Zhan P J, Chen Z C 2024 J. Eur. Ceram. Soc. 44 5677Google Scholar

    [23]

    Choudhary A K, Grubesa T, Jansche A, Bernthaler T, Goll D, Schneider G 2024 Acta Mater. 264 119563Google Scholar

    [24]

    Kusne A G, Gao T, Mehta A, Ke L Q, Nguyen M C, Ho K M, Antropov V, Wang C Z, Kramer M J, Long C, Takeuchi I 2014 Sci. Rep. 4 63Google Scholar

    [25]

    Nieves P, Arapan S, Hadjipanayis G C, Niarchos D, Barandiaran J M, Cuesta-López S 2016 Phys. Status Solidi C 13 942Google Scholar

    [26]

    Xia W Y, Sakurai M, Balasubramanian B, Liao T, Wang R H, Zhang C, Sun H J, Ho K M, Chelikowsky J R, Sellmyer D J, Wang C Z 2022 Proc. Natl. Acad. Sci. 119 2204485119Google Scholar

    [27]

    Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chin. Phys. B 27 067503Google Scholar

    [28]

    张博 2018 博士学位论文 (北京: 中国科学院大学)

    Zhang B 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [29]

    Ucar H, Paudyal D, Choudhary K 2022 Comp. Mater. Sci. 209 111414Google Scholar

    [30]

    Alqahtani A 2024 Sustainability 16 1542Google Scholar

    [31]

    Shamsah S M I 2024 Int. J. Refrig. 168 122Google Scholar

    [32]

    Zhao Q, Yan K L, Cui Z, Wen B Y, Xue F, Li J T, Guo J N, Xu A, Qiao K M, Ye R C, Long Y, Zhang D W, Luo H, Taskaev S, Zhang H 2023 Corros. Sci. 216 111115Google Scholar

    [33]

    Gong J H, Zhang Z M, Zhang C L, Hu P Q, Zhou C, Wang D H, Yang S 2024 Rare Met. 43 2251Google Scholar

    [34]

    Hu P Q, Zhou C, Zhang R S, Ding S D, Guo Y J, Wang B, Xue D Z, Ma Y Z, Dai Z Y, Zhang Y, Tian F H, Yang S 2025 Mater. Design 252 113799Google Scholar

    [35]

    Foggiatto A L, Mizutori Y, Yamazaki T, Sato S, Masuzawa K, Nagaoka R, Taniwaki M, Fujieda S, Suzuki S, Ishiyama K, Fukuda T, Igarashi Y, Mitsumata C, Kotsugi M 2023 IEEE T. Magn. 59 2501604

    [36]

    黎威, 龙连春, 刘静毅, 杨洋 2022 71 060202Google Scholar

    Li W, Long L C, Liu J Y, Yang Y 2022 Acta Phys. Sin. 71 060202Google Scholar

    [37]

    Liu D, Liu Z X, Zhang J E, Yin Y N, Xi J F, Wang L C, Xiong J F, Zhang M, Zhao T Y, Jin J Y, Sun J R, Hu F X, Shen J, Shen B G 2023 Research 6 0082Google Scholar

    [38]

    Liu D, Song J H, Liu Z X, Zhang J E, Chen W Q, Yin Y N, Xi J F, Zheng X Q, Hao J Z, Zhao T Y, Hu F X, Sun J R, Shen B G 2025 Mater. Design 251 113710Google Scholar

    [39]

    Li X, Shek C H, Liaw P K, Shan G C 2024 Prog. Mater. Sci. 146 101332Google Scholar

  • [1] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为.  , 2025, 74(2): 028103. doi: 10.7498/aps.74.20241581
    [2] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学.  , 2025, 74(6): 060701. doi: 10.7498/aps.74.20240999
    [3] 张孙成, 韩同伟, 王如盟, 杨艳陶, 张小燕. 基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化.  , 2025, 74(9): 096201. doi: 10.7498/aps.74.20241624
    [4] 吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧. 基于机器学习的托卡马克偏滤器靶板热负荷预测研究.  , 2025, 74(13): 135205. doi: 10.7498/aps.74.20250381
    [5] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能.  , 2025, 74(5): 057701. doi: 10.7498/aps.74.20241379
    [6] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性.  , 2025, 74(13): 130201. doi: 10.7498/aps.74.20250362
    [7] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法.  , 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [8] 张嘉晖. 蛋白质计算中的机器学习.  , 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [9] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测.  , 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [10] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [11] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用.  , 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [12] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [13] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测.  , 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [14] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能.  , 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [15] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度.  , 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [16] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测.  , 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [17] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [18] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习.  , 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [19] 郭淑慧, 吕欣. 网络直播平台数据挖掘与行为分析综述.  , 2020, 69(8): 088908. doi: 10.7498/aps.69.20191776
    [20] 段焰辉, 吴文华, 范召林, 罗佳奇. 基于本征正交分解的气动优化设计外形数据挖掘.  , 2017, 66(22): 220203. doi: 10.7498/aps.66.220203
计量
  • 文章访问数:  562
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-04-15
  • 上网日期:  2025-04-29

/

返回文章
返回
Baidu
map