搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC功率MOSFET单粒子效应与加固技术研究进展

邱一武 梁迪 殷亚楠 董磊 王韬 周昕杰

引用本文:
Citation:

SiC功率MOSFET单粒子效应与加固技术研究进展

邱一武, 梁迪, 殷亚楠, 董磊, 王韬, 周昕杰

Research progress on single event effect and hardening technology of SiC power MOSFET

QIU Yiwu, LIANG Di, YIN Yanan, DONG Lei, WANG Tao, ZHOU Xinjie
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在空间核反应堆系统、深空探测器电源模块以及运载火箭推进装置等极端辐射环境中,高压大功率器件展现出重要的应用价值。碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)具备耐高压、耐高温和低导通损耗等优点,能够使宇航电源的效率得到进一步提升。因此,SiC功率MOSFET空间辐射效应和抗辐射加固技术迅速成为行业的研究热点。首先,本文回顾了SiC功率MOSFET器件的发展历程,分析了从平面栅技术到沟槽栅技术的演变过程,并对未来新型SiC功率MOSFET技术进行了展望。其次,针对SiC功率MOSFET在复杂空间环境下面临的辐射损伤问题,着重梳理了目前国内外关于重离子辐照SiC功率MOSFET引起的单粒子烧毁与单粒子栅穿的相关研究成果[一邱1]。最后,基于SiC功率MOSFET单粒子辐射损伤机制分析,总结了目前SiC功率MOSFET抗辐射加固技术的研究进展,为研究SiC功率MOSFET单粒子效应损伤机制以及改进其抗辐射加固技术提供参考。
    In extreme radiation environments, such as space nuclear reactor systems, deep-space probe power modules, and launch vehicle propulsion systems, high-voltage and high-power devices demonstrate significant practical value. Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) possess advantages including high breakdown voltage, thermal stability, and low on-state resistance, enabling further improvements in aerospace power supply efficiency. Therefore, research on radiation effects and radiation-hardening techniques for SiC power MOSFETs has rapidly emerged as a critical focus in the industry. Firstly, this paper reviews the developmental evolution of SiC power MOSFETs, analyzes the necessity of transitioning from planar gate to trench-gate architectures, and provides future perspectives on advanced SiC power MOSFET technologies. Secondly, it systematically compiles current domestic and international research achievements on single event burnout (SEB) and single event gate rupture (SEGR) caused by heavy ion irradiation in SiC power MOSFETs. Finally, based on a mechanistic analysis of radiation-induced single event damage in SiC power MOSFETs, this study summarizes recent progress in radiation-hardening technologies, aiming to provide valuable insights for understanding radiation induced failure mechanisms and enhancing the radiation tolerance of SiC power MOSFETs.
  • [1]

    Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V, Turpin D C 1984IEEE Trans. Nucl. Sci. 31 1453

    [2]

    Frisina F, Gombia E, Chirco P, Tavolo N, Mosca R, Fuochi P G 1990Radiat. Phys. Chem. 35 500

    [3]

    Hazdra P, Vobecky J, Brand K 2002Nucl. Instrum. Meth. Res. Sect. B 186 414

    [4]

    Meng X, Yang H, Kang G, Wang J, Jia H, Chen P, Tsien P 2003J. Mater. Sci. Mater. Electron. 14 199

    [5]

    Muthuseenu K, Barnaby H J, Galloway K F, Koziukov A E, Maksimenko T A, Vyrostkov M Y Khasan K B, Kalashnikova A A, Privat A 2021IEEE Trans. Nucl. Sci. 68 611

    [6]

    Yu Q K, Cao S, Zhang H W Mei B, Sun Y, Wang H, Li X L, Lv H, Li P W, Tang M 2019 Atomic Energy Sci. Technol. 53 2114(in Chinese) [于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民2019原子能科学技术53 2114]

    [7]

    Asai H, Nashiyama I, Sugimoto K, Shiba K, Sakaide Y, Ishimaru Y 2014IEEE Trans. Nucl. Sci. 61 3109

    [8]

    Niskanen K, Germanicus R C, Michez A, Wrobel F, Boch J, Saigné F 2021IEEE Trans. Nucl. Sci. 68 1623

    [9]

    Baliga B J 1989IEEE Electron Device Lett. 10 455

    [10]

    She X, Huang A Q, Lucía ó, Ozpineci B 2017IEEE Trans. Ind. Electron. 64 8193

    [11]

    Palmour J W 2014 Proceedings of 2014IEEE International Electron Devices Meeting San Francisco, CA, USA, December 15-17, 2014 p1

    [12]

    Saks N S, Mani S S, Agarwal A K 2000Appl. Phys. Lett. 76 2250

    [13]

    Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P, Kawaguchi Y 2017IEEE Trans. Electron Devices 64 674

    [14]

    Zhu S, Shi L, Jin M, Qian J, Bhattacharya M, Maddi H L R 2023 Proceedings of 2023IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, March 26-30, 2023 p1-p5

    [15]

    Rohm https://techweb.rohm.com/product/power-device/sic/6574[2025-02-25]

    [16]

    Rohm https://www.rohm.com/news-detail?news-title=new-4th-gen-sic-mosfets&defaultGroupId=false [2025-02-25]

    [17]

    Sun P Y, Sun L J, Xue Z, She X L, Han R L, Wu Y W, Wang L L, Zhang F 2023Electron. Packag. 23 010111(in Chinese) [孙培元, 孙立杰, 薛哲, 佘晓亮, 韩若麟, 吴宇微, 王来利, 张峰2023电子与封装23 010111]

    [18]

    Infineon Technologies AG https://www.signalintegrityjournal.com/articles/3493-infineon-introduces-coolsic-mosfet-g2-the-next-generation-of-silicon-carbide-technology-for-high-performance-systems-that-drive-decarbonization [2025-02-25]

    [19]

    Lay L https://www.st.com/content/dam/is20/document/PE3-2_Lay_Lv_ST_SIC_Mosfet_Diode_product_and_application_Industrial_summit_Version2_EN.pdf [2025-02-25]

    [20]

    Onsemi https://www.onsemi.cn/company/news-media/press-announcements/en/next-generation-onsemi-1200-v-elitesic-m3s-devices-enhance-efficiency-of-electric-vehicles-and-energy-infrastructure-applications [2025-02-25]

    [21]

    Huang R H, Tao Y H, Bai S, Chen G, Wang L, Liu A, Wei N, Li Y, Zhao Z F 2014Res. Prog. Solid State Electron. 34 503(in Chinese) [黄润华, 陶永洪, 柏松, 陈刚, 汪玲, 刘奥, 卫能, 李赟, 赵志飞2014固体电子学研究与进展34 503]

    [22]

    Yuan J, Wang K, Guo F, Xu S D, Cheng Z J, Chen W, Wu Y Y, Peng R S, Zhu L Y, Li M Z下一代碳化硅沟槽器件技术--技术文章频道-《化合物半导体》 [2025-02-25] (in Chinese) [袁俊,王宽,郭飞,徐少东,成志杰,陈伟,吴阳阳,彭若诗,朱厉阳,李明哲下一代碳化硅沟槽器件技术--技术文章频道-《化合物半导体》 [2025-02-25]]

    [23]

    Yuan J 2021 CN11390801B (in Chinese) [袁俊2021 CN11390801B]

    [24]

    Chen W, Guo F, Cheng Z J, Wang K, Wu Y Y, Yuan J 2024 CN119133246A (in Chinese) [陈伟, 郭飞, 成志杰, 王宽, 吴阳阳, 袁俊2024 CN119133246A]

    [25]

    Liu Q J, Song G, Luo Y H, He Q M, Wang Y F, Yao Y, Li C Z, Xiao Q, Luo H H 2024 CN119050156A (in Chinese) [刘启军, 宋瓘, 罗烨辉, 何启鸣, 王亚飞, 姚尧, 李诚瞻, 肖强, 罗海辉2024 CN119050156A]

    [26]

    Wang Y F, Chen X M, Li C Z, Luo H H 2020 CN202010591568.0(in Chinese) [王亚飞, 陈喜明, 李诚瞻, 罗海辉2020 CN202010591568.0]

    [27]

    Tanaka S, Rajanna K, Abe T, Esashi M 2001J. Vac. Sci. Technol. B 19 2173

    [28]

    Palmour J W, Edmond J A, Kong H S, Jr C 1993 Proceedings of Silicon carbide and related materials: Fifth international conference on SiC carbide and related materials (ICSCRM’93), Washington, DC, USA, November 1-3, 1993 p499-p502

    [29]

    Tan J, Cooper J A, Melloch M R 1998IEEE Electron Device Lett. 19 487

    [30]

    Shen Z, Zhang F, Yan G, Wen Z, Zhao W, Wang L 2020IEEE Trans. Electron. Devices 67 4046

    [31]

    Nakamura T, Nakano Y, Aketa M, Nakamura R, Mitani S, Sakairi H 2011 Proceedings of 2011International Electron Devices Meeting, Washington, DC, USA, December 05-07, 2011 p26.5.1-p26.5.3

    [32]

    Harada S, Kobayashi Y, Kinoshita A, Ohse N, Kojima T, Lwaya M 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25-29, 2016 p1

    [33]

    Kim W, Lichtenwalner D J, Ryu S H, Islam N 2022 US 2022/0157959A1

    [34]

    Zhang Y, Zhang T, Huang R, Bo S 2022Electron. Compon. Mater. 41 376(in Chinese) [张跃, 张腾, 黄润华, 柏松2022电子元件与材料41 376]

    [35]

    Saitoh Y, Masuda T, Tamaso H, Notsu H, Michikoshi H, Hiratsuka K 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25-29, 2016 p1

    [36]

    Uchida K, Hiyoshi T, Saito Y, Tsuno T 2020Mater. Sci. Forum 1004 776

    [37]

    Rycroft M J 1995J. Atmos. Terr. Phys. 57 1672

    [38]

    Niskanen K, Touboul A D, Germanicus R C, Michez A, Javanainen A, Wrobel F 2020IEEE Trans. Nucl. Sci. 67 1365

    [39]

    Liang X, Zhao J, Zheng Q, Cui J, Yang S, Wang B, Zhang D, Yu X, Guo Q 2021Radiat. Eff. Def. Solids. 176 1038

    [40]

    Mcpherson J A, Hitchcock C W, Chow T P, Ji W, Woodworth A A 2021IEEE Trans. Nucl. Sci. 68 651

    [41]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014IEEE Trans. Nucl. Sci. 61 1924

    [42]

    Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M 2018IEEE Trans. Nucl. Sci. 65 1951

    [43]

    Oberg D L, Wert J L 1987IEEE Trans. Nucl. Sci. 34 1736

    [44]

    Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G 2020IEEE Trans. Nucl. Sci. 67 1381

    [45]

    Lauenstein J, Casey M, Ladbury R, Kim H, Phan A, Topper A 2021 Proceedings of 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, March 21-25, 2021 p1-p8

    [46]

    Martinella C, Natzk P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022Microelectron. Reliab. 128 114423

    [47]

    Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016Smart Grid 4 1078(in Chinese) [王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏2016智能电网 4 1078]

    [48]

    Liu Z Y, Cai L, Liu X Q, Liu B J, Cui H Q, Yang X K 2017Micronanoelectr. Technol. 54 80(in Chinese) [刘忠永, 蔡理, 刘小强, 刘保军, 崔焕卿, 杨晓阔2017微纳电子技术54 80]

    [49]

    Yu Q K, Cao S, Zhang S R, Sun Y, Mei B, Wang Q Y, Wang H, Wei Z C, Zhang H W, Zhang T, Bai S 2023 Atomic Energy Sci. Technol. 57 2254(in Chinese) [于庆奎, 曹爽, 张琛睿, 孙毅, 梅博, 王乾元, 王贺, 魏志超, 张洪伟, 张腾, 柏松2023原子能科学技术57 2254]

    [50]

    Zhao S, Liu Y, Yan X, Hu P, Li X, Chen Q, Zhai P, Zhang T, Jiao Y, Sun Y, Liu J 2025Microelectron. Reliab. 167 115663

    [51]

    Zhang H, Guo H, Lei Z, Peng C, Zhang Z, Chen Z, Sun C, He Y, Zhang F, Pan X, Zhong X, Ouyang X 2023Chin. Phys. B 32 028504

    [52]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F 2020IEEE Trans. Nucl. Sci. 67 22

    [53]

    Peng C, Lei Z, Chen Z, Yue S, Zhang Z, He Y, Huang Y 2021IET Power Electron. 14 1700

    [54]

    Wu L, Dong S, Xu X, Wei Y, Liu Z, Li W, Yang J, Li X 2024IEEE Trans. Nucl. Sci.71 1978

    [55]

    Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H 2019IEEE Trans. Nucl. Sci. 66 2312

    [56]

    Wang L, Jia Y, Zhou X, Zhao Y, Wang L, Li T, Hu D, Wu Y, Deng Z 2022Microelectron. Reliab. 137 114770

    [57]

    Peng J Q 2020 M.S. Thesis (Lanzhou: Lanzhou University) (in Chinese) [彭锦秋2020硕士学位论文(兰州: 兰州大学)]

    [58]

    Peng J Q, Zhang X, Wu K, Liu X Y, Yang X, Bai X H, Wei Z, Yao Z E, Wang J R, Jiang T Z, Bao C, Lu J W, Zhang Y 2023Nucl. Phys. Rev. 40 459(in Chinese) [彭锦秋, 张行, 吴康, 刘兴宇, 杨旭, 白晓厚, 韦峥, 姚泽恩, 王俊润, 蒋天植, 包超, 卢佳玮, 张宇2023原子核物理评论40 459]

    [59]

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022Microelectronics 52 466(in Chinese) [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇2022微电子学52 466]

    [60]

    Martinella C, Race S, Stark R, Alia R G, Javanainen A, Grossner U 2023IEEE Trans. Nucl. Sci.70 1844

    [61]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021IEEE Trans. Nucl. Sci. 68 1430

    [62]

    Martinella C, Race S, Für N, Goncalves de Medeiros H, Zhou H, Grossner U 2024IEEE Trans. Nucl. Sci. 71 1440

    [63]

    Li Y F, Guo H X, Zhang H, Bai R X, Zhang F Q, Ma W Y, Zhong X L, Li J F, Lu X J 2024Acta Phys. Sin. 73 026103(in Chinese) [李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰2024 73 026103]

    [64]

    Shi J, Wang Y, Fei X, Sun B, Song Y, Liu Y, Zhang W 2024IEEE Access 13 5023

    [65]

    Yu C, Bao M, Wang Y, Guo H, Han Y, Hu H 2022IEEE Trans. Device Mater. Reliab. 22 469

    [66]

    Wang Y, Zhou J, Lin M, Li X, Yang J, Cao F 2022IEEE Trans. Electron Devices 10 373

    [67]

    Hohl J H, Johnnson G H 1989IEEE Trans. Nucl. Sci. 36 2260

    [68]

    Kuboyama S, Matsuda S, Kanno T, Ishii T 1993IEEE Trans. Nucl. Sci. 391698

    [69]

    Titus J L 2013IEEE Trans. Nucl. Sci. 601912

    [70]

    Zhang X 2006 Ph. D. Thesis (MD, USA: University of Maryland, College Park)

    [71]

    Griffoni A, Duivenbode J v, Linten D, Simoen E, Rech P, Dilillo L 2011 Proceedings of 201112th European Conference on Radiation and Its Effects on Components and Systems, Sevilla, Spain, September 19-23, 2011 p226-p231

    [72]

    Ikpe S A, Lauenstein J M, Carr G A, Hunter D, Ludwing L L, Wood W 2016 Proceedings of 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, USA, April 17-21, 2016 p1

    [73]

    Johnson R A, Witulski A F, Ball D R, Galloway K F, Sternberg A L 2019IEEE Trans. Nucl. Sci. 661694

    [74]

    Shoji T, Nishida S, Hamada K, Tadano H 2015Microelectron. Reliab. 55 1517

    [75]

    Wang H, Gu J, Huang X, Zhang J, Jing Y 2024Microelectron. Reliab. 154 115344

    [76]

    McPherson J A, Hitchcock C W, Chow T P, Ji W 2020Mater. Sci. Forum. 1004 889

    [77]

    Zhang Z, Yuan H, Liu K, Zhang Y, Liu Y, Han C 2024IEEE Electron Device Lett. 45 2495

    [78]

    Zhang N, Tang X, Song Q, Liu K, Zhang Z, Yuan H 2023 Proceedings of 20235th International Conference on Radiation Effects of Electronic Devices (ICREED), Kunming, China, May 24-27, 2023 p1-p3

    [79]

    Waskiewicz A E, Groninger J W, Strahan V H, Long D M 1986IEEE Trans. Nucl. Sci. 33 1710

    [80]

    Lauenstein J M, Casey M, Topper A, Wilcox E, Phan A, Ikpe S, LaBel K 2015 Proceedings of 2015 IEEE Nuclear and Space Radiation Effects Conference (NSREC), Boston, Massachusetts, July 16, 2015 p1

    [81]

    Liu S, Titus J L, Boden M 2007IEEE Trans. Nucl. Sci. 54 2554

    [82]

    Zhou X, Jia Y, Hu D, Wu Y 2019IEEE Trans. Electron Devices 66 2551

    [83]

    Wang Y, Lin M, Li X, Wu X, Yang J, Bao M 2019IEEE Trans. Electron Devices 66 4264

    [84]

    Jiang L, Liu J, Tian X, Chen H, Tang Y, Bai Y 2020IEEE Trans. Electron Devices 67 3698

    [85]

    Lin M 2020 M.S. Thesis (Hangzhou: Hangzhou Dianzi University) (in Chinese) [林茂2020硕士学位论文(杭州: 杭州电子科技大学)]

    [86]

    Liao Q, Liu H 2024Micromachines 15 642

    [87]

    Huang S, Amaratunga A J, Udrea F 2000IEEE Trans. Nucl. Sci. 47 2640

    [88]

    Zerarka M, Austin P, Morancho F, Isoird K, Arbess H, Tasselli J 2014IET Circuits Devices Syst. 8 197

    [89]

    Lu J, Liu H, Cai X, Luo J, Li B, Li B, Wang L, Han Z 2018J. Semicond. 39 034003

    [90]

    Yu C, Wang Y, Cao F, Huang L, Wang Y 2015IEEE Trans. Electron Devices 62 143

    [91]

    Yang Y 2023 M.S. Thesis (Hunan: Hunan University) (in Chinese) [杨余2023硕士学位论文(湖南: 湖南大学)]

    [92]

    Wang Y, Liu T, Qian L, Wu H, Yu Y, Tao J, Cheng Z, Hu S 2023Micromachines 14 688

    [93]

    Sun S, Chen F, Sun Y, Li Y, Yang K, Tang X 2024Microelectron. Reliab. 164 115569

    [94]

    Ranjan S, Majumder S, Naugarhiya A 2020 Proceedings of 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, February 28-29, 2020 p272-p275

    [95]

    Amjath M, Ranjan S, Naugarhiya A 2022 Proceedings of 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhiai, India, April 21-22, 2022 p1-p5

    [96]

    Hohl J, Johnnson G 1989IEEE Trans. Nucl. Sci. 36 2260

    [97]

    Darwish M, Yue C, Lui K H, Giles F, Chan B, Chen K I, Pattanayak D, Chen Q, Terrill K, Owyang K 2003 Proceedings of the ISPSD ‘03, 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, Cambridge, UK, April 14–172003 p24-p27

    [98]

    Lu J, Liu H, Luo J, Wang L, Li B, Li B, Zhang G, Han Z 2016 Proceedings of 201616th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, September 19-23, 2016 p1-p5

    [99]

    Liu Y, Wang Y, Yu C H, Luo X, Cao F 2018Superlatt. Microstruct. 122 165

    [100]

    Liang S, Yang Y, Chen J, Shu L, Wang L, Wang J 2024IEEE Trans. Device Mater. Reliab. 24 507

    [101]

    Shen P, Wang Y, Li X J, Yang J, Zheng L 2023Microelectron. Reliab. 142 114931

    [102]

    Kim J, Kim K 2022IEEE Trans. Device Mater. Reliab. 22 164

    [103]

    Yu Q, Chen W, Huang J, Shen Z, Lin Z, Peng H, Shu H, Li J 2025Micro Nanostruct. 198 208064

  • [1] 李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰. 双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应.  , doi: 10.7498/aps.73.20231440
    [2] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究.  , doi: 10.7498/aps.72.20230976
    [3] 崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟. 空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究.  , doi: 10.7498/aps.71.20212297
    [4] 蒲瑾, 杨树政, 林恺. 洛伦兹破缺理论与Vaidya黑洞弯曲时空中的Dirac粒子隧穿辐射特征.  , doi: 10.7498/aps.68.20190437
    [5] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究.  , doi: 10.7498/aps.65.084209
    [6] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真.  , doi: 10.7498/aps.64.118502
    [7] 丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航. 静态随机存储器总剂量辐射损伤的在线与离线测试方法.  , doi: 10.7498/aps.63.086101
    [8] 岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 兰慕杰. 质子辐射损伤对单结GaAs/Ge太阳电池暗特性参数的影响.  , doi: 10.7498/aps.63.188101
    [9] 张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东. 串口型铁电存储器总剂量辐射损伤效应和退火特性.  , doi: 10.7498/aps.62.156107
    [10] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究.  , doi: 10.7498/aps.62.058502
    [11] 高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超. 国产星用VDMOS器件总剂量辐射损伤效应研究.  , doi: 10.7498/aps.61.176107
    [12] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响.  , doi: 10.7498/aps.61.064201
    [13] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型.  , doi: 10.7498/aps.60.097302
    [14] 杨树政, 林恺. Kerr-de Sitter黑洞任意自旋粒子的隧穿辐射及其熵修正.  , doi: 10.7498/aps.59.5266
    [15] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射.  , doi: 10.7498/aps.59.4380
    [16] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较.  , doi: 10.7498/aps.55.3546
    [17] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究.  , doi: 10.7498/aps.55.2476
    [18] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射.  , doi: 10.7498/aps.55.3796
    [19] 宋祥云, 温树林. 碲镉汞辐射损伤的微观过程.  , doi: 10.7498/aps.37.301
    [20] 戴元本. ω粒子的辐射衰变.  , doi: 10.7498/aps.20.131
计量
  • 文章访问数:  32
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回
Baidu
map