搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梯度折射率微腔的色散调控

唐荻 陈天赐 康朝烽 杨彬彬 张磊 杨煜 王克逸

引用本文:
Citation:

基于梯度折射率微腔的色散调控

唐荻, 陈天赐, 康朝烽, 杨彬彬, 张磊, 杨煜, 王克逸
cstr: 32037.14.aps.74.20241803

Dispersion control based on gradient refractive index microresonators

TANG Di, CHEN Tianci, KANG Zhaofeng, YANG Binbin, ZHANG Lei, YANG Yu, WANG Keyi
cstr: 32037.14.aps.74.20241803
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 回音壁模式微腔的色散调控是克尔光频梳生成的关键. 然而回音壁模式微腔色散设计主要是通过改变微腔结构调控模场分布, 方式较为单一. 本文将径向分布的梯度折射率$n(r)$引入回音壁模式微腔, 提出使用改变折射率分布调控梯度折射率微腔色散. 通过数值计算和有限元仿真结果表明, 折射率梯度的约束使微腔模场的位置远离微腔边缘, 梯度折射率微腔具有零几何色散特性. 基于设计不同折射率分布提出两种色散调控方式—修饰微腔边缘几何外形和构建双势阱. 并且研究了微腔半径、楔角大小、离子扩散和塑形工艺顺序、双势阱宽度和间距对色散的影响. 仿真结果表明两种方式均可以得到通信波段较大范围的反常色散, 梯度折射率微腔色散调控方式十分灵活, 在非线性光学应用领域具有极大潜力.
    Kerr optical frequency combs based on whispering-gallery mode (WGM) microresonators have great potential for applications in various fields, such as precision measurement, spectral analysis, optical communication, and quantum technology. The interaction between dispersion and nonlinearity is crucial for determining the stability and bandwidth performance of optical frequency combs. In particular, the Kerr bright soliton optical frequency comb requires a suitable anomalous group velocity dispersion (GVD) to maintain the dissipative system. Therefore, designing the dispersion of the WGM microresonator is essential for generating the Kerr optical frequency comb. However, WGM microresonators typically have normal and fixed material dispersion, and their dispersion design is mainly based on modulating the mode field distribution by changing the microresonator structure to achieve anomalous dispersion, which limits their flexibility. In this paper, we introduce a radially distributed gradient refractive index n(r) into WGM microresonators and propose to use the refractive index profile for controlling the dispersion of gradient-index (GRIN) microresonators. Numerical simulations and finite element analysis demonstrate that the refractive index gradient constrains the mode field and pushes it away from the cavity edge, resulting in near-zero geometric dispersion in the GRIN microresonator. Two dispersion modulation methods are explored: modifying the microresonator’s geometric shape and constructing a dual potential well. The effects of microresonator radius, wedge angle, ion diffusion sequence, and potential well width and spacing on dispersion are systematically investigated. Simulation results show that both methods can achieve a wide range of anomalous dispersion within the communication band. In the first method, mode field leakage in the bilateral wedge-shaped GRIN microresonator produces anomalous dispersion, while no leakage results in normal dispersion. When the mode field is pushed away from the edge, near-zero dispersion is achieved. In the second method, energy coupling between the inner mode and the outer mode in the dual potential well structure leads to anomalous dispersion in the inner mode and normal dispersion in the outer mode. Our findings highlight the flexibility of GRIN microresonator dispersion control and indicate great potential for nonlinear optical applications.
      通信作者: 王克逸, kywang@ustc.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: JZ2023HGQA0106, JZ2023HGTA0199)、安徽省自然科学基金(批准号: 2308085QF208)和安徽省重点研究与开发计划(批准号: 202304a05020015)资助的课题.
      Corresponding author: WANG Keyi, kywang@ustc.edu.cn
    • Funds: Project supported by the the Fundamental Research Fund for the Central Universities, China (Grant Nos. JZ2023HGQA0106, JZ2023HGTA0199), the Natural Science Foundation of Anhui Province, China (Grant No. 2308085QF208), and the Key Research and Development Program of Anhui Province, China (Grant No. 202304a05020015).
    [1]

    Vahala K 2003 Nature 424 839Google Scholar

    [2]

    孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸 2020 69 014203Google Scholar

    Meng L J, Wang M Y, Shen Y, Yang Y, Xu W B, Zhang L, Wang K Y 2020 Acta Phys. Sin. 69 014203Google Scholar

    [3]

    Liu W, Li W, Wang R, Xing E, Jing N, Zhou Y, Tang J, Liu J 2021 Opt. Commun. 497 127148Google Scholar

    [4]

    Wan H, Liu L, Ding Z, Wang J, Xiao Y, Zhang Z 2018 Opt. Laser Technol. 102 160Google Scholar

    [5]

    Jiang S, Guo C, Fu H, Che K, Xu H, Cai Z 2020 Opt. Express 28 38304Google Scholar

    [6]

    Strekalov D V, Marquardt C, Matsko A B, Schwefel H G L, Leuchs G 2016 J. Opt. 18 123002Google Scholar

    [7]

    Wu X Y, Wang K, Wang H, Lu B, Gao Y P, Wang C 2023 EPL 141 25001Google Scholar

    [8]

    Fuerst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt C, Leuchs G 2010 Phys. Rev. Lett. 105 263904Google Scholar

    [9]

    Cheng S, Zhang X, Shang M, Liu X, Jia K, Xie Z, Zhu S 2024 Phys. Rev. A 109 L011502Google Scholar

    [10]

    Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J 2007 Nature 450 1214Google Scholar

    [11]

    Nakagawa Y, Mizumoto Y, Kato T, Kobatake T, Itobe H, Kakinuma Y, Tanabe T 2016 J. Opt. Soc. Am. B 33 1913Google Scholar

    [12]

    Xu L, Xie C, Wang M, Guo Z, Wei B, Zhang H, Zhang L, He X 2023 Opt. Express 31 38365Google Scholar

    [13]

    Sturman B, Breunig I 2015 New J. Phys. 17 125006Google Scholar

    [14]

    Tian J, Lin G 2024 J. Lightwave Technol. 42 2118Google Scholar

    [15]

    Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 eaan8083Google Scholar

    [16]

    Fujii S, Tanabe T 2020 Nanophotonics 9 1087Google Scholar

    [17]

    Grudinin I S, Yu N 2015 Optica 2 221Google Scholar

    [18]

    Zhou C, Du J, He Z 2017 IEEE Photon. J. 9 7908008Google Scholar

    [19]

    Jin X, Wang J, Wang M, Dong Y, Li F, Wang K 2017 Appl. Opt. 56 8023Google Scholar

    [20]

    Ke C, Ma J, Huang Y, Zeng Z, Xu C, Qin J 2019 Appl. Opt. 58 1522Google Scholar

    [21]

    Ilchenko V, Savchenkov A, Matsko A, Maleki L 2003 J. Opt. Soc. Am. A 20 157Google Scholar

    [22]

    Zhu D, Zhou Y, Yu X, Shum P, Luan F 2012 Opt. Express 20 26285Google Scholar

    [23]

    Chen T, Kang Z, Yang Y, Zhao S, Zhang J, Zhang L, Wang K 2023 J. Opt. Soc. Am. A 40 1208Google Scholar

    [24]

    Chen T, Kang Z, Zhang J, Huang Z, Tang D, Yang B, Yang Y, Wang K 2024 J. Opt. Soc. Am. B 41 486Google Scholar

    [25]

    Ba Q, Zhou Y, Li J, Xiao W, Ye L, Liu Y, Chen J H, Chen H 2022 eLight 2 19Google Scholar

    [26]

    Dadashi K, Kurt H, Ustun K, Esen R 2014 J. Opt. Soc. Am. B 31 2239Google Scholar

    [27]

    王克逸, 汪景昌 1989 38 1334Google Scholar

    Wang K Y, Wang J C 1989 Acta Phys. Sin. 38 1334Google Scholar

    [28]

    Sellmeier W 1872 Annalen der Physik 223 386Google Scholar

    [29]

    Nie M, Jia K, Xie Y, Zhu S, Xie Z, Huang S W 2022 Nat. Commun. 13 6395Google Scholar

  • 图 1  (a) GRIN微腔的折射率分布, 从边缘到内部折射率由低变高, 模场远离微腔表面; (b) GRIN微腔沿径向折射率分布曲线n(r), 其中n(r)r曲线极点为基模位置

    Fig. 1.  (a) Refractive index distribution of the GRIN microresonator, with low to high refractive indices from the edges to the interior, with the mode field away from the microresonator surface; (b) GRIN microresonator refractive index distribution curve n(r) along the radial direction, where n(r)r curve pole is the fundamental mode position.

    图 2  (a)不同扩散时间下的折射率分布; (b)不同扩散时间下的势函数

    Fig. 2.  (a) Refractive index distribution at different diffusion times; (b) potential function at different diffusion times

    图 3  数值计算的WGM微腔和GRIN微腔的GVD

    Fig. 3.  Numerically calculated GVD of WGM microresonators and GRIN microresonators.

    图 4  (a) GRIN微腔的折射率分布; (b) GRIN微腔的基模模场; (c) WGM微腔的折射率分布; (d) WGM微腔的基模模场; (e) GRIN, WGM微腔几何色散

    Fig. 4.  (a) Refractive index distribution of GRIN microresonator; (b) fundamental mode field of GRIN microresonator; (c) refractive index distribution of WGM microresonator; (d) fundamental mode field of WGM microresonator; (e) geometric dispersion of GRIN, WGM microresonator

    图 5  不同半径和楔角大小的后扩散双边楔形GRIN微腔及其GVD (a), (c), (e) GRIN 微腔折射率分布和基模模场; (b), (d), (f)对应的GRIN 微腔的 GVD

    Fig. 5.  Diffusion-after bilateral wedge-shaped GRIN microresonator and their GVD with different radius and wedge angle sizes: (a), (c), (e) Refractive index distributions and fundamental mode fields of GRIN microresonators; (b), (d), (f) GVD of the corresponding GRIN microresonators

    图 6  (a) 500 µm, 楔角半角正切1/2的先扩散微腔的折射率分布; (b) 500 µm, 楔角半角正切1/2的后扩散微腔的折射率分布; (c) 对应的先扩散微腔的基模模场; (d) 对应的后扩散微腔的基模模场; (e) 两种 GRIN 微腔的 GVD

    Fig. 6.  (a) Refractive index distribution of a 500 µm, wedge-angle half-angle tangent 1/2 of the diffusion-first microresonator; (b) refractive index distribution of a 500 µm, wedge-angle half-angle tangent 1/2 of the diffusion-after microresonator; (c) corresponding fundamental mode fields of the first diffusion microresonator; (d) corresponding fundamental mode fields of the after-diffusion microresonator; (e) GVD of the two GRIN microresonators.

    图 7  不同半径和楔角大小的先扩散双边楔形 GRIN 微腔及其GVD (a), (c), (e) GRIN 微腔折射率分布和基模模场; (b), (d), (f)对应的GRIN 微腔的 GVD

    Fig. 7.  Diffusion-first bilateral wedge-shaped GRIN microresonator and their GVD with different radius and wedge angle sizes: (a), (c), (e) Refractive index distributions and fundamental mode fields of GRIN microresonators; (b), (d), (f) GVD of corresponding GRIN microresonators.

    图 8  (a)双势阱GRIN微腔的折射率分布$ n(r) $和势函数$ V(r) $; (b)内层基模径向模场; (c)外层基模径向模场

    Fig. 8.  (a) Refractive index distribution $ n(r) $ and potential function $ V(r) $ of the GRIN microresonator with double-potential well; (b) radial mode field of the fundamental mode of the inner layer; (c) radial mode field of the fundamental mode of the outer layer.

    图 9  双势阱GRIN微腔的内层模式色散和外层模式色散

    Fig. 9.  Inner mode dispersion and outer mode dispersion of a double potential well GRIN microresonator

    图 10  (a)双势阱GRIN微腔的折射率分布$ n(r) $和势函数$ V(r) $; (b)内层基模径向模场; (c)外层基模径向模场

    Fig. 10.  (a) Refractive index distribution $ n(r) $ and potential function $ V(r) $ of the double-potential-well GRIN microresonator; (b) radial mode field of the inner fundamental mode; (c) radial mode field of the outer fundamental mode.

    图 11  不同势阱间距对应的GVD

    Fig. 11.  GVD corresponding to different potential well space

    图 12  (a)改变外层势阱宽度对应的GVD; (b)改变内层势阱宽度对应的GVD

    Fig. 12.  (a) GVD corresponding to changing the width of the outer potential wells; (b) GVD corresponding to changing the width of the inner potential wells

    Baidu
  • [1]

    Vahala K 2003 Nature 424 839Google Scholar

    [2]

    孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸 2020 69 014203Google Scholar

    Meng L J, Wang M Y, Shen Y, Yang Y, Xu W B, Zhang L, Wang K Y 2020 Acta Phys. Sin. 69 014203Google Scholar

    [3]

    Liu W, Li W, Wang R, Xing E, Jing N, Zhou Y, Tang J, Liu J 2021 Opt. Commun. 497 127148Google Scholar

    [4]

    Wan H, Liu L, Ding Z, Wang J, Xiao Y, Zhang Z 2018 Opt. Laser Technol. 102 160Google Scholar

    [5]

    Jiang S, Guo C, Fu H, Che K, Xu H, Cai Z 2020 Opt. Express 28 38304Google Scholar

    [6]

    Strekalov D V, Marquardt C, Matsko A B, Schwefel H G L, Leuchs G 2016 J. Opt. 18 123002Google Scholar

    [7]

    Wu X Y, Wang K, Wang H, Lu B, Gao Y P, Wang C 2023 EPL 141 25001Google Scholar

    [8]

    Fuerst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt C, Leuchs G 2010 Phys. Rev. Lett. 105 263904Google Scholar

    [9]

    Cheng S, Zhang X, Shang M, Liu X, Jia K, Xie Z, Zhu S 2024 Phys. Rev. A 109 L011502Google Scholar

    [10]

    Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J 2007 Nature 450 1214Google Scholar

    [11]

    Nakagawa Y, Mizumoto Y, Kato T, Kobatake T, Itobe H, Kakinuma Y, Tanabe T 2016 J. Opt. Soc. Am. B 33 1913Google Scholar

    [12]

    Xu L, Xie C, Wang M, Guo Z, Wei B, Zhang H, Zhang L, He X 2023 Opt. Express 31 38365Google Scholar

    [13]

    Sturman B, Breunig I 2015 New J. Phys. 17 125006Google Scholar

    [14]

    Tian J, Lin G 2024 J. Lightwave Technol. 42 2118Google Scholar

    [15]

    Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 eaan8083Google Scholar

    [16]

    Fujii S, Tanabe T 2020 Nanophotonics 9 1087Google Scholar

    [17]

    Grudinin I S, Yu N 2015 Optica 2 221Google Scholar

    [18]

    Zhou C, Du J, He Z 2017 IEEE Photon. J. 9 7908008Google Scholar

    [19]

    Jin X, Wang J, Wang M, Dong Y, Li F, Wang K 2017 Appl. Opt. 56 8023Google Scholar

    [20]

    Ke C, Ma J, Huang Y, Zeng Z, Xu C, Qin J 2019 Appl. Opt. 58 1522Google Scholar

    [21]

    Ilchenko V, Savchenkov A, Matsko A, Maleki L 2003 J. Opt. Soc. Am. A 20 157Google Scholar

    [22]

    Zhu D, Zhou Y, Yu X, Shum P, Luan F 2012 Opt. Express 20 26285Google Scholar

    [23]

    Chen T, Kang Z, Yang Y, Zhao S, Zhang J, Zhang L, Wang K 2023 J. Opt. Soc. Am. A 40 1208Google Scholar

    [24]

    Chen T, Kang Z, Zhang J, Huang Z, Tang D, Yang B, Yang Y, Wang K 2024 J. Opt. Soc. Am. B 41 486Google Scholar

    [25]

    Ba Q, Zhou Y, Li J, Xiao W, Ye L, Liu Y, Chen J H, Chen H 2022 eLight 2 19Google Scholar

    [26]

    Dadashi K, Kurt H, Ustun K, Esen R 2014 J. Opt. Soc. Am. B 31 2239Google Scholar

    [27]

    王克逸, 汪景昌 1989 38 1334Google Scholar

    Wang K Y, Wang J C 1989 Acta Phys. Sin. 38 1334Google Scholar

    [28]

    Sellmeier W 1872 Annalen der Physik 223 386Google Scholar

    [29]

    Nie M, Jia K, Xie Y, Zhu S, Xie Z, Huang S W 2022 Nat. Commun. 13 6395Google Scholar

  • [1] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析.  , 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [2] 温广锋, 赵领中, 张琳, 陈毅云, 罗圻林, 方安安, 刘士阳. 基于柱对称梯度折射率体系的可调控光束传输.  , 2022, 71(14): 144201. doi: 10.7498/aps.71.20212247
    [3] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应.  , 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [4] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁.  , 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [5] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] 赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武. 基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用.  , 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [7] 管义钧, 孙宏祥, 袁寿其, 葛勇, 夏建平. 近表面层黏性模量梯度变化的复合平板中激光热弹激发声表面波的传播特性.  , 2016, 65(22): 224201. doi: 10.7498/aps.65.224201
    [8] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征.  , 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [9] 袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武. 由于表面粗糙引起的激光声表面波色散的实验和理论研究.  , 2012, 61(1): 014210. doi: 10.7498/aps.61.014210
    [10] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析.  , 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [11] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性.  , 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [12] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究.  , 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [13] 夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田. V形高双折射光子晶体光纤特性研究.  , 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [14] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析.  , 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场.  , 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [16] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力.  , 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [17] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析.  , 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [18] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究.  , 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [19] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析.  , 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [20] 胡明列, 王清月, 栗岩峰, 倪晓昌, 张志刚, 王 专, 柴 路, 侯蓝田, 李曙光, 周桂耀. 非均匀微结构光纤中双折射现象的研究.  , 2004, 53(12): 4248-4252. doi: 10.7498/aps.53.4248
计量
  • 文章访问数:  456
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-31
  • 修回日期:  2025-01-16
  • 上网日期:  2025-01-24
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map