Processing math: 100%

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟

隋鹏翔

颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟

隋鹏翔

Lattice Boltzmann method simulated effect of nanoparticle size on natural convection patterns of nanofluids

Sui Peng-Xiang
cstr: 32037.14.aps.73.20241332
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用无量纲格子玻尔兹曼(non-dimensional lattice Boltzmann method, NDLBM)对方腔内纳米流体的自然对流进行数值模拟, 讨论克努森数(106Knf,s104)、瑞利数(103Raf,L106)、颗粒体积分数(102ϕs101)等参数对纳米流体流动和传热的影响. 结果表明: 在不同Raf,L下, 颗粒粒径对传热效率的影响是不同的. 在低Raf,L的热传导区间, 颗粒粒径对传热影响较小; 在高Raf,L的热对流区间, 较大的颗粒粒径显著提升了流动强度和传热效率. 若保持Raf,Lϕs不变, 随着颗粒粒径的减小, 纳米流体的传热方式由热传导转变为热对流. 此外, 针对高Raf,L的热对流区间, 在兼顾了导热和流动性的情况下, 最大传热效率所对应的颗粒体积分数为ϕs=8%. 最后, 通过分析平均努塞尔数¯Nuf,L和纳米流体相较于基液增加传热率Ren,f随不同无量纲参数变化的三维等值面图, 发现¯Nuf,LRen,f的极值均出现在颗粒粒径为Knf,s=101. 基于数值结果, 构建¯Nuf,LKnf,s, Raf,L, ϕs之间的函数关系式, 揭示了这些无量纲参数对传热性能的影响.
    In this work, numerical simulation of natural convection of nanofluids within a square enclosure are conducted by using the non-dimensional lattice Boltzmann method (NDLBM). The effects of key governing parameters Knudsen number (106Knf,s104), Rayleigh number (103Raf,L106), and nanoparticle volume fraction (102ϕs101) on the heat and mass transfer of nanofluids are discussed. The results show that in the low Raf,L conduction dominated regime, the nanoparticle size has little effect on heat transfer, whereas in the high Raf,L convection dominated regime, larger nanoparticle size significantly enhances flow intensity and heat transfer efficiency. For fixed Raf,L and ϕs, the heat transfer patterns change from conduction to convection dominated regime with Knf,s increasing. The influence of nanoparticle volume fraction is also investigated, and in the convection-dominated regime, the maximum heat transfer efficiency is achieved when ϕs=8%, balancing thermal conduction and drag fore of nanofluid. Additionally, by analyzing the full maps of mean Nusselt number (¯Nuf,L) and the enhancement ratio related to the base fluid (Ren,f), the maximum value of ¯Nuf,L and Ren,f occur when the nanoparticle size is Knf,s=101 for both conductive and convection dominated regime. To ascertain the effects of all key governing parameters on ¯Nuf,L, a new empirical correlation is derived from the numerical results, providing a more in-depth insight into how these parameters influence on heat transfer performance.
      PACS:
      通信作者: 隋鹏翔, pxsui@cnu.edu.cn
    • 基金项目: 北京市教育委员会科技计划一般项目(批准号: KM202410028009)资助的课题.
      Corresponding author: Sui Peng-Xiang, pxsui@cnu.edu.cn
    • Funds: Project supported by the Scientific Research Project of Beijing Education Committee, China (Grant No. KM202410028009).
    [1]

    Wang X, Song Y, Li C, Zhang Y, Ali H M, Sharma S, Li R, Yang M, Gao T, Liu M, Cui X, Said Z, Zhou Z 2024 Int. J. Adv. Manuf. Technol. 131 3113Google Scholar

    [2]

    Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Samykano M, Harun W S W, Najafi G, Mofijur M, Mazlan M 2021 Sustainable Energy Technol. Assess. 44 101058Google Scholar

    [3]

    Said Z, Sundar L S, Tiwari A K, Ali H M, Sheikholeslami M, Bellos E, Babar H 2022 Phys. Rep. 946 1Google Scholar

    [4]

    Smaisim G F, Mohammed D B, Abdulhadi A M, Uktamov K F, Alsultany F H, Izzat S E, Ansari M J, Kzar H H, Al-Gazally M E, Kianfar E 2022 J. Sol-Gel Sci. Technol. 104 1Google Scholar

    [5]

    肖波齐, 范金土, 蒋国平, 陈玲霞 2012 61 317Google Scholar

    Xiao B Q, Fan J T, Jiang G P, Chen L X 2012 Acta Phys. Sin. 61 317Google Scholar

    [6]

    Azmi W H, Sharma K V, Mamat R, Najafi G, Mohamad M S 2016 Renewable Sustainable Energy Rev. 53 1046Google Scholar

    [7]

    Wang X, Xu X, Choi S U S 1999 J. Thermophys. Heat Transfer 13 474Google Scholar

    [8]

    Das S K, Putra N, Thiesen P, Roetzel W 2003 J. Heat Transfer 125 567Google Scholar

    [9]

    Nguyen C T, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Minsta H A 2008 Int. J. Therm. Sci. 47 103Google Scholar

    [10]

    Maxwell J C 1982 A Treatise on Electricity and Magnetism (Vol. 2) (London: Oxford University Press) pp173–215

    [11]

    Nan C W, Shi Z, Lin Y 2003 Chem. Phys. Lett. 375 666Google Scholar

    [12]

    Mintsa H A, Roy G, Nguyen C T, Doucet D 2009 Int. J. Therm. Sci. 48 363Google Scholar

    [13]

    Brinkman H C 1952 J. Chem. Phys. 20 571Google Scholar

    [14]

    Batchelor G K 1977 J. Fluid Mech. 83 97Google Scholar

    [15]

    Nguyen C T, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Minsta H A 2007 Int. J. Heat Fluid Flow 28 1492Google Scholar

    [16]

    Majumdar A 1993 J. Heat Transfer 115 7Google Scholar

    [17]

    Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749Google Scholar

    [18]

    Su Y, Davidson J H 2018 Int. J. Heat Mass Transfer 127 303Google Scholar

    [19]

    Chambre P A, Schaaf S A 1961 Flow of Rarefied Gases (Princeton: Princeton University Press) pp78–146

    [20]

    Sui P, Su Y, Sin V, Davidson J H 2022 Int. J. Heat Mass Transfer 187 122541Google Scholar

    [21]

    Zarki A, Ghalambaz M, Chamkha A J, Ghalambaz M, Rossi D D 2015 Adv. Powder Technol. 26 935Google Scholar

    [22]

    Sabour M, Ghalambaz M, Chamkha A 2017 Int. J. Numer. Methods Heat Fluid Flow 27 1504Google Scholar

    [23]

    Paul T C, Morshed A, Fox E B, Khan J A 2017 Int. J. Heat Mass Transfer 28 753

    [24]

    Liu F, Wang L 2009 Int. J. Heat Mass Transfer 52 5849Google Scholar

    [25]

    Zahmatkesh I, Sheremet M, Yang L, Heris S Z, Sharifpur M, Meyer J P, Ghalambaz M, Wongwises S, Jing D, Mahian O 2021 J. Mol. Liq. 321 114430Google Scholar

    [26]

    Trodi A, Benhamza M E H 2017 Chem. Eng. Commun. 204 158Google Scholar

    [27]

    Sheikhzadeh G A, Aghaei A, Soleimani S 2018 Challenges Nano Micro Scale Sci. Technol. 6 27

    [28]

    Dogonchi A S, Hashemi-Tilehnoee M, Waqas M, Seyyedi S M, Animasaun I L, Ganji D D 2020 Phys. A 540 123034Google Scholar

    [29]

    张贝豪, 郑林 2020 69 164401Google Scholar

    Zhang B H, Zheng L 2020 Acta Phys. Sin. 69 164401Google Scholar

    [30]

    Su Y, Sui P, Davidson J H 2022 Renew. Energy 184 712Google Scholar

    [31]

    Lai F, Yang Y 2011 Int. J. Therm. Sci. 50 1930Google Scholar

    [32]

    Sheikholeslami M, Gorji-Bandpy M, Domairry G 2013 Appl. Math. Mech. 34 833Google Scholar

    [33]

    齐聪, 何光艳, 李意民, 何玉荣 2015 64 328Google Scholar

    Qi C, He G Y, Li Y M, He Y R 2015 Acta Phys. Sin. 64 328Google Scholar

    [34]

    Taher M A, Kim H D, Lee Y W 2017 Heat Transfer Res. 48 1025Google Scholar

    [35]

    袁俊杰, 叶欣, 单彦广 2021 计算物理 38 57

    Yuan J J, Ye X, Shan Y G 2021 Chinese Journal of Computational Physics 38 57

    [36]

    Ganji D D, Malvandi A 2014 Powder Technol. 263 50Google Scholar

    [37]

    Hwang K S, Lee J H, Jang S P 2009 Int. J. Heat Mass Transfer 50 4003

    [38]

    Wang D, Cheng P, Quan X 2019 Int. J. Heat Mass Transfer 130 1358Google Scholar

    [39]

    Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transfer 92 995Google Scholar

    [40]

    Tarokh A, Mohamad A, Jiang L 2013 Numer. Heat Transfer, Part A 63 159Google Scholar

    [41]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506Google Scholar

    [42]

    Li C H, Peterson G P 2007 J. Appl. Phys. 101 044312Google Scholar

    [43]

    Chon C H, Kihm K D, Lee S P 2005 Appl. Phys. Lett. 87 153107Google Scholar

  • 图 1  物理模型和边界条件示意图

    Fig. 1.  Sketch of the problem and boundary conditions.

    图 2  不同网格数对平均努塞尔数¯Nuf,L的影响

    Fig. 2.  The influence of different mesh grid on the mean Nusselt number ¯Nuf,L.

    图 3  平均努塞尔数¯Nuf,L与其他文献数值结果[31,41]对比

    Fig. 3.  Comparison of mean Nusset number ¯Nuf,L obtained by present study and other numerical results[31,41].

    图 4  在固定颗粒体积分数ϕs=8%, 不同颗粒粒径1×104Knf,s1×102和瑞利数1×103Raf,L1×106下的无量纲速度场流线分布图像 (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106

    Fig. 4.  Dimensionless streamlines for different nanoparticle size 1×104Knf,s1×102 and Rayleigh number 1×103Raf,L1×106 with fixed ϕs=8%: (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106

    图 5  在固定颗粒体积分数ϕs=8%, 不同颗粒粒径1×104Knf,s1×102和瑞利数1×103Raf,L1×106下的无量纲温度场等温线分布图像 (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106

    Fig. 5.  Dimensionless isotherms for different nanoparticle size 1×104Knf,s1×102 and Rayleigh number 1×103Raf,L1×106 with fixed ϕs=8%: (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106.

    图 6  不同颗粒体积分数和瑞利数下, 平均努塞尔数¯Nuf,L与克努森数1×106Knf,s1×104关系 (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106

    Fig. 6.  The mean Nusselt number ¯Nuf,L versus Knudsen number 1×106Knf,s1×104 with different volume fraction and Rayleigh number: (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106.

    图 7  不同瑞利数1×103Raf,L1×106和固定颗粒体积分数ϕs=8%下, 平均努塞尔数¯Nuf,L与克努森数关系

    Fig. 7.  The mean Nusselt number ¯Nuf,L versus Knudsen number with different Rayleigh number 1×103Raf,L1×106 and fixed nanoparticle volume fraction ϕs=8%.

    图 8  不同瑞利数1×103Raf,L1×106和固定颗粒体积分数ϕs=8%下, 纳米流体相较于基液传热增加率Ren,f与克努森数关系

    Fig. 8.  The enhancement ratio Ren,f versus Knudsen number with different Rayleigh number 1×103Raf,L1×106 and fixed nanoparticle volume fraction ϕs=8%.

    图 9  不同瑞利数1×103Raf,L1×106和固定颗粒粒径Knf,s=101下, 平均努塞尔数¯Nuf,L与颗粒体积分数关系

    Fig. 9.  The mean Nusselt number ¯Nuf,L versus nanoparticle volume fraction with different Rayleigh number 1×103Raf,L1×106 and fixed nanoparticle size Knf,s=101.

    图 10  不同瑞利数1×103Raf,L1×106和固定颗粒粒径Knf,s=101下, 纳米流体相较于基液传热增加率Ren,f与颗粒体积分数关系

    Fig. 10.  The enhancement ratio Ren,f versus nanoparticle volume fraction with different Rayleigh number 1×103Raf,L1×106 and fixed nanoparticle size Knf,s=101.

    图 11  不同克努森数1×103Knf,s1×102和固定颗粒体积分数ϕs=8%下, 平均努塞尔数¯Nuf,L与瑞利数关系

    Fig. 11.  The mean Nusselt number ¯Nuf,L versus Rayleigh number with different Knudsen number 1×103Knf,s1×102 and fixed nanoparticle volume fraction ϕs=8%.

    图 12  不同克努森数1×103Knf,s1×102和固定颗粒体积分数ϕs=8%下, 纳米流体相较于基液传热增加率Ren,f与瑞利数关系

    Fig. 12.  The enhancement ratio Ren,f versus Rayleigh number with different Knudsen number 1×103Knf,s1×102 and fixed nanoparticle volume fraction ϕs=8%.

    图 13  全参数范围下(a)平均努塞尔数的对数函数lg(¯Nuf,L)=llg(knkf¯Nun,L)和(b)纳米流体相较基液传热增加率Ren,f随不同克努森数Knf,s、瑞利数Raf,L、颗粒体积分数ϕs变化的三维等值面图

    Fig. 13.  The three dimensional isosurfaces of (a) logarithmic function of mean Nusselt number lg(¯Nuf,L)=lg(knkf¯Nun,L) and (b) enhancement ratio Ren,f over the full parameter range as a function of Knudsen number Knf,s, Rayleigh number Raf,L, and nanoparticle volume fraction ϕs.

    表 1  水和氧化铝纳米颗粒的物性参数[37,38]

    Table 1.  Physical properties of the water and Al2O3 nanoparticle[37,38].

    ρ/(kgm3) cp/(Jkg1K1) k/(Wm1K1) λ/ nm
    997.1 4179 0.613 0.3
    Al2O3纳米颗粒 3970 765 40 35
    下载: 导出CSV
    Baidu
  • [1]

    Wang X, Song Y, Li C, Zhang Y, Ali H M, Sharma S, Li R, Yang M, Gao T, Liu M, Cui X, Said Z, Zhou Z 2024 Int. J. Adv. Manuf. Technol. 131 3113Google Scholar

    [2]

    Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Samykano M, Harun W S W, Najafi G, Mofijur M, Mazlan M 2021 Sustainable Energy Technol. Assess. 44 101058Google Scholar

    [3]

    Said Z, Sundar L S, Tiwari A K, Ali H M, Sheikholeslami M, Bellos E, Babar H 2022 Phys. Rep. 946 1Google Scholar

    [4]

    Smaisim G F, Mohammed D B, Abdulhadi A M, Uktamov K F, Alsultany F H, Izzat S E, Ansari M J, Kzar H H, Al-Gazally M E, Kianfar E 2022 J. Sol-Gel Sci. Technol. 104 1Google Scholar

    [5]

    肖波齐, 范金土, 蒋国平, 陈玲霞 2012 61 317Google Scholar

    Xiao B Q, Fan J T, Jiang G P, Chen L X 2012 Acta Phys. Sin. 61 317Google Scholar

    [6]

    Azmi W H, Sharma K V, Mamat R, Najafi G, Mohamad M S 2016 Renewable Sustainable Energy Rev. 53 1046Google Scholar

    [7]

    Wang X, Xu X, Choi S U S 1999 J. Thermophys. Heat Transfer 13 474Google Scholar

    [8]

    Das S K, Putra N, Thiesen P, Roetzel W 2003 J. Heat Transfer 125 567Google Scholar

    [9]

    Nguyen C T, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Minsta H A 2008 Int. J. Therm. Sci. 47 103Google Scholar

    [10]

    Maxwell J C 1982 A Treatise on Electricity and Magnetism (Vol. 2) (London: Oxford University Press) pp173–215

    [11]

    Nan C W, Shi Z, Lin Y 2003 Chem. Phys. Lett. 375 666Google Scholar

    [12]

    Mintsa H A, Roy G, Nguyen C T, Doucet D 2009 Int. J. Therm. Sci. 48 363Google Scholar

    [13]

    Brinkman H C 1952 J. Chem. Phys. 20 571Google Scholar

    [14]

    Batchelor G K 1977 J. Fluid Mech. 83 97Google Scholar

    [15]

    Nguyen C T, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Minsta H A 2007 Int. J. Heat Fluid Flow 28 1492Google Scholar

    [16]

    Majumdar A 1993 J. Heat Transfer 115 7Google Scholar

    [17]

    Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749Google Scholar

    [18]

    Su Y, Davidson J H 2018 Int. J. Heat Mass Transfer 127 303Google Scholar

    [19]

    Chambre P A, Schaaf S A 1961 Flow of Rarefied Gases (Princeton: Princeton University Press) pp78–146

    [20]

    Sui P, Su Y, Sin V, Davidson J H 2022 Int. J. Heat Mass Transfer 187 122541Google Scholar

    [21]

    Zarki A, Ghalambaz M, Chamkha A J, Ghalambaz M, Rossi D D 2015 Adv. Powder Technol. 26 935Google Scholar

    [22]

    Sabour M, Ghalambaz M, Chamkha A 2017 Int. J. Numer. Methods Heat Fluid Flow 27 1504Google Scholar

    [23]

    Paul T C, Morshed A, Fox E B, Khan J A 2017 Int. J. Heat Mass Transfer 28 753

    [24]

    Liu F, Wang L 2009 Int. J. Heat Mass Transfer 52 5849Google Scholar

    [25]

    Zahmatkesh I, Sheremet M, Yang L, Heris S Z, Sharifpur M, Meyer J P, Ghalambaz M, Wongwises S, Jing D, Mahian O 2021 J. Mol. Liq. 321 114430Google Scholar

    [26]

    Trodi A, Benhamza M E H 2017 Chem. Eng. Commun. 204 158Google Scholar

    [27]

    Sheikhzadeh G A, Aghaei A, Soleimani S 2018 Challenges Nano Micro Scale Sci. Technol. 6 27

    [28]

    Dogonchi A S, Hashemi-Tilehnoee M, Waqas M, Seyyedi S M, Animasaun I L, Ganji D D 2020 Phys. A 540 123034Google Scholar

    [29]

    张贝豪, 郑林 2020 69 164401Google Scholar

    Zhang B H, Zheng L 2020 Acta Phys. Sin. 69 164401Google Scholar

    [30]

    Su Y, Sui P, Davidson J H 2022 Renew. Energy 184 712Google Scholar

    [31]

    Lai F, Yang Y 2011 Int. J. Therm. Sci. 50 1930Google Scholar

    [32]

    Sheikholeslami M, Gorji-Bandpy M, Domairry G 2013 Appl. Math. Mech. 34 833Google Scholar

    [33]

    齐聪, 何光艳, 李意民, 何玉荣 2015 64 328Google Scholar

    Qi C, He G Y, Li Y M, He Y R 2015 Acta Phys. Sin. 64 328Google Scholar

    [34]

    Taher M A, Kim H D, Lee Y W 2017 Heat Transfer Res. 48 1025Google Scholar

    [35]

    袁俊杰, 叶欣, 单彦广 2021 计算物理 38 57

    Yuan J J, Ye X, Shan Y G 2021 Chinese Journal of Computational Physics 38 57

    [36]

    Ganji D D, Malvandi A 2014 Powder Technol. 263 50Google Scholar

    [37]

    Hwang K S, Lee J H, Jang S P 2009 Int. J. Heat Mass Transfer 50 4003

    [38]

    Wang D, Cheng P, Quan X 2019 Int. J. Heat Mass Transfer 130 1358Google Scholar

    [39]

    Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transfer 92 995Google Scholar

    [40]

    Tarokh A, Mohamad A, Jiang L 2013 Numer. Heat Transfer, Part A 63 159Google Scholar

    [41]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506Google Scholar

    [42]

    Li C H, Peterson G P 2007 J. Appl. Phys. 101 044312Google Scholar

    [43]

    Chon C H, Kihm K D, Lee S P 2005 Appl. Phys. Lett. 87 153107Google Scholar

  • [1] 李康睿, 王军, 夏国栋. 基于羟基化Janus碳纳米管的纳米流体导热特性.  , 2025, 74(6): 064701. doi: 10.7498/aps.74.20241657
    [2] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟.  , 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [3] 鲁维, 陈硕, 于致远, 赵嘉毅, 张凯旋. 基于能量守恒耗散粒子动力学方法的自然对流模拟改进研究.  , 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [4] 刘哲, 王雷磊, 时朋朋, 崔海航. 纳米流体液滴内的光驱流动实验及其解析解.  , 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [5] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟.  , 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [6] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响.  , 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [7] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟.  , 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [8] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟.  , 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [9] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究.  , 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [10] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法.  , 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [11] 齐聪, 何光艳, 李意民, 何玉荣. 方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟.  , 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [12] 雷娟棉, 杨浩, 黄灿. 基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比.  , 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [13] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟.  , 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [14] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为.  , 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [15] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [16] 肖波齐, 范金土, 蒋国平, 陈玲霞. 纳米流体对流换热机理分析.  , 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [17] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟.  , 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [18] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟.  , 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [19] 谢华清, 陈立飞. 纳米流体对流换热系数增大机理.  , 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [20] 谢华清, 奚同庚, 王锦昌. 纳米流体介质导热机理初探.  , 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
计量
  • 文章访问数:  1285
  • PDF下载量:  75
出版历程
  • 收稿日期:  2024-09-22
  • 修回日期:  2024-10-18
  • 上网日期:  2024-10-28
  • 刊出日期:  2024-12-05

/

返回文章
返回
Baidu
map