-
采用无量纲格子玻尔兹曼(non-dimensional lattice Boltzmann method, NDLBM)对方腔内纳米流体的自然对流进行数值模拟, 讨论克努森数(10−6⩽Knf,s⩽104)、瑞利数(103⩽Raf,L⩽106)、颗粒体积分数(10−2⩽ϕs⩽10−1)等参数对纳米流体流动和传热的影响. 结果表明: 在不同Raf,L下, 颗粒粒径对传热效率的影响是不同的. 在低Raf,L的热传导区间, 颗粒粒径对传热影响较小; 在高Raf,L的热对流区间, 较大的颗粒粒径显著提升了流动强度和传热效率. 若保持Raf,L和ϕs不变, 随着颗粒粒径的减小, 纳米流体的传热方式由热传导转变为热对流. 此外, 针对高Raf,L的热对流区间, 在兼顾了导热和流动性的情况下, 最大传热效率所对应的颗粒体积分数为ϕs=8%. 最后, 通过分析平均努塞尔数¯Nuf,L和纳米流体相较于基液增加传热率Ren,f随不同无量纲参数变化的三维等值面图, 发现¯Nuf,L和Ren,f的极值均出现在颗粒粒径为Knf,s=10−1. 基于数值结果, 构建¯Nuf,L与Knf,s, Raf,L, ϕs之间的函数关系式, 揭示了这些无量纲参数对传热性能的影响.In this work, numerical simulation of natural convection of nanofluids within a square enclosure are conducted by using the non-dimensional lattice Boltzmann method (NDLBM). The effects of key governing parameters Knudsen number (10−6⩽Knf,s⩽104), Rayleigh number (103⩽Raf,L⩽106), and nanoparticle volume fraction (10−2⩽ϕs⩽10−1) on the heat and mass transfer of nanofluids are discussed. The results show that in the low Raf,L conduction dominated regime, the nanoparticle size has little effect on heat transfer, whereas in the high Raf,L convection dominated regime, larger nanoparticle size significantly enhances flow intensity and heat transfer efficiency. For fixed Raf,L and ϕs, the heat transfer patterns change from conduction to convection dominated regime with Knf,s increasing. The influence of nanoparticle volume fraction is also investigated, and in the convection-dominated regime, the maximum heat transfer efficiency is achieved when ϕs=8%, balancing thermal conduction and drag fore of nanofluid. Additionally, by analyzing the full maps of mean Nusselt number (¯Nuf,L) and the enhancement ratio related to the base fluid (Ren,f), the maximum value of ¯Nuf,L and Ren,f occur when the nanoparticle size is Knf,s=10−1 for both conductive and convection dominated regime. To ascertain the effects of all key governing parameters on ¯Nuf,L, a new empirical correlation is derived from the numerical results, providing a more in-depth insight into how these parameters influence on heat transfer performance.
-
Keywords:
- Knudsen number /
- nanofluid /
- natural convection /
- lattice Boltzmann method
[1] Wang X, Song Y, Li C, Zhang Y, Ali H M, Sharma S, Li R, Yang M, Gao T, Liu M, Cui X, Said Z, Zhou Z 2024 Int. J. Adv. Manuf. Technol. 131 3113
Google Scholar
[2] Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Samykano M, Harun W S W, Najafi G, Mofijur M, Mazlan M 2021 Sustainable Energy Technol. Assess. 44 101058
Google Scholar
[3] Said Z, Sundar L S, Tiwari A K, Ali H M, Sheikholeslami M, Bellos E, Babar H 2022 Phys. Rep. 946 1
Google Scholar
[4] Smaisim G F, Mohammed D B, Abdulhadi A M, Uktamov K F, Alsultany F H, Izzat S E, Ansari M J, Kzar H H, Al-Gazally M E, Kianfar E 2022 J. Sol-Gel Sci. Technol. 104 1
Google Scholar
[5] 肖波齐, 范金土, 蒋国平, 陈玲霞 2012 61 317
Google Scholar
Xiao B Q, Fan J T, Jiang G P, Chen L X 2012 Acta Phys. Sin. 61 317
Google Scholar
[6] Azmi W H, Sharma K V, Mamat R, Najafi G, Mohamad M S 2016 Renewable Sustainable Energy Rev. 53 1046
Google Scholar
[7] Wang X, Xu X, Choi S U S 1999 J. Thermophys. Heat Transfer 13 474
Google Scholar
[8] Das S K, Putra N, Thiesen P, Roetzel W 2003 J. Heat Transfer 125 567
Google Scholar
[9] Nguyen C T, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Minsta H A 2008 Int. J. Therm. Sci. 47 103
Google Scholar
[10] Maxwell J C 1982 A Treatise on Electricity and Magnetism (Vol. 2) (London: Oxford University Press) pp173–215
[11] Nan C W, Shi Z, Lin Y 2003 Chem. Phys. Lett. 375 666
Google Scholar
[12] Mintsa H A, Roy G, Nguyen C T, Doucet D 2009 Int. J. Therm. Sci. 48 363
Google Scholar
[13] Brinkman H C 1952 J. Chem. Phys. 20 571
Google Scholar
[14] Batchelor G K 1977 J. Fluid Mech. 83 97
Google Scholar
[15] Nguyen C T, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Minsta H A 2007 Int. J. Heat Fluid Flow 28 1492
Google Scholar
[16] Majumdar A 1993 J. Heat Transfer 115 7
Google Scholar
[17] Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749
Google Scholar
[18] Su Y, Davidson J H 2018 Int. J. Heat Mass Transfer 127 303
Google Scholar
[19] Chambre P A, Schaaf S A 1961 Flow of Rarefied Gases (Princeton: Princeton University Press) pp78–146
[20] Sui P, Su Y, Sin V, Davidson J H 2022 Int. J. Heat Mass Transfer 187 122541
Google Scholar
[21] Zarki A, Ghalambaz M, Chamkha A J, Ghalambaz M, Rossi D D 2015 Adv. Powder Technol. 26 935
Google Scholar
[22] Sabour M, Ghalambaz M, Chamkha A 2017 Int. J. Numer. Methods Heat Fluid Flow 27 1504
Google Scholar
[23] Paul T C, Morshed A, Fox E B, Khan J A 2017 Int. J. Heat Mass Transfer 28 753
[24] Liu F, Wang L 2009 Int. J. Heat Mass Transfer 52 5849
Google Scholar
[25] Zahmatkesh I, Sheremet M, Yang L, Heris S Z, Sharifpur M, Meyer J P, Ghalambaz M, Wongwises S, Jing D, Mahian O 2021 J. Mol. Liq. 321 114430
Google Scholar
[26] Trodi A, Benhamza M E H 2017 Chem. Eng. Commun. 204 158
Google Scholar
[27] Sheikhzadeh G A, Aghaei A, Soleimani S 2018 Challenges Nano Micro Scale Sci. Technol. 6 27
[28] Dogonchi A S, Hashemi-Tilehnoee M, Waqas M, Seyyedi S M, Animasaun I L, Ganji D D 2020 Phys. A 540 123034
Google Scholar
[29] 张贝豪, 郑林 2020 69 164401
Google Scholar
Zhang B H, Zheng L 2020 Acta Phys. Sin. 69 164401
Google Scholar
[30] Su Y, Sui P, Davidson J H 2022 Renew. Energy 184 712
Google Scholar
[31] Lai F, Yang Y 2011 Int. J. Therm. Sci. 50 1930
Google Scholar
[32] Sheikholeslami M, Gorji-Bandpy M, Domairry G 2013 Appl. Math. Mech. 34 833
Google Scholar
[33] 齐聪, 何光艳, 李意民, 何玉荣 2015 64 328
Google Scholar
Qi C, He G Y, Li Y M, He Y R 2015 Acta Phys. Sin. 64 328
Google Scholar
[34] Taher M A, Kim H D, Lee Y W 2017 Heat Transfer Res. 48 1025
Google Scholar
[35] 袁俊杰, 叶欣, 单彦广 2021 计算物理 38 57
Yuan J J, Ye X, Shan Y G 2021 Chinese Journal of Computational Physics 38 57
[36] Ganji D D, Malvandi A 2014 Powder Technol. 263 50
Google Scholar
[37] Hwang K S, Lee J H, Jang S P 2009 Int. J. Heat Mass Transfer 50 4003
[38] Wang D, Cheng P, Quan X 2019 Int. J. Heat Mass Transfer 130 1358
Google Scholar
[39] Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transfer 92 995
Google Scholar
[40] Tarokh A, Mohamad A, Jiang L 2013 Numer. Heat Transfer, Part A 63 159
Google Scholar
[41] Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506
Google Scholar
[42] Li C H, Peterson G P 2007 J. Appl. Phys. 101 044312
Google Scholar
[43] Chon C H, Kihm K D, Lee S P 2005 Appl. Phys. Lett. 87 153107
Google Scholar
-
图 4 在固定颗粒体积分数ϕs=8%, 不同颗粒粒径1×10−4⩽Knf,s⩽1×102和瑞利数1×103⩽Raf,L⩽1×106下的无量纲速度场流线分布图像 (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106
Fig. 4. Dimensionless streamlines for different nanoparticle size 1×10−4⩽Knf,s⩽1×102 and Rayleigh number 1×103⩽Raf,L⩽1×106 with fixed ϕs=8%: (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106
图 5 在固定颗粒体积分数ϕs=8%, 不同颗粒粒径1×10−4⩽Knf,s⩽1×102和瑞利数1×103⩽Raf,L⩽1×106下的无量纲温度场等温线分布图像 (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106
Fig. 5. Dimensionless isotherms for different nanoparticle size 1×10−4⩽Knf,s⩽1×102 and Rayleigh number 1×103⩽Raf,L⩽1×106 with fixed ϕs=8%: (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106.
图 6 不同颗粒体积分数和瑞利数下, 平均努塞尔数¯Nuf,L与克努森数1×10−6⩽Knf,s⩽1×104关系 (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106
Fig. 6. The mean Nusselt number ¯Nuf,L versus Knudsen number 1×10−6⩽Knf,s⩽1×104 with different volume fraction and Rayleigh number: (a) Raf,L=1×103; (b) Raf,L=1×104; (c) Raf,L=1×105; (d) Raf,L=1×106.
图 13 全参数范围下(a)平均努塞尔数的对数函数lg(¯Nuf,L)=llg(knkf¯Nun,L)和(b)纳米流体相较基液传热增加率Ren,f随不同克努森数Knf,s、瑞利数Raf,L、颗粒体积分数ϕs变化的三维等值面图
Fig. 13. The three dimensional isosurfaces of (a) logarithmic function of mean Nusselt number lg(¯Nuf,L)=lg(knkf¯Nun,L) and (b) enhancement ratio Ren,f over the full parameter range as a function of Knudsen number Knf,s, Rayleigh number Raf,L, and nanoparticle volume fraction ϕs.
ρ/(kg⋅m−3) cp/(J⋅kg−1⋅K−1) k/(W⋅m−1⋅K−1) λ/ nm 水 997.1 4179 0.613 0.3 Al2O3纳米颗粒 3970 765 40 35 -
[1] Wang X, Song Y, Li C, Zhang Y, Ali H M, Sharma S, Li R, Yang M, Gao T, Liu M, Cui X, Said Z, Zhou Z 2024 Int. J. Adv. Manuf. Technol. 131 3113
Google Scholar
[2] Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Samykano M, Harun W S W, Najafi G, Mofijur M, Mazlan M 2021 Sustainable Energy Technol. Assess. 44 101058
Google Scholar
[3] Said Z, Sundar L S, Tiwari A K, Ali H M, Sheikholeslami M, Bellos E, Babar H 2022 Phys. Rep. 946 1
Google Scholar
[4] Smaisim G F, Mohammed D B, Abdulhadi A M, Uktamov K F, Alsultany F H, Izzat S E, Ansari M J, Kzar H H, Al-Gazally M E, Kianfar E 2022 J. Sol-Gel Sci. Technol. 104 1
Google Scholar
[5] 肖波齐, 范金土, 蒋国平, 陈玲霞 2012 61 317
Google Scholar
Xiao B Q, Fan J T, Jiang G P, Chen L X 2012 Acta Phys. Sin. 61 317
Google Scholar
[6] Azmi W H, Sharma K V, Mamat R, Najafi G, Mohamad M S 2016 Renewable Sustainable Energy Rev. 53 1046
Google Scholar
[7] Wang X, Xu X, Choi S U S 1999 J. Thermophys. Heat Transfer 13 474
Google Scholar
[8] Das S K, Putra N, Thiesen P, Roetzel W 2003 J. Heat Transfer 125 567
Google Scholar
[9] Nguyen C T, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Minsta H A 2008 Int. J. Therm. Sci. 47 103
Google Scholar
[10] Maxwell J C 1982 A Treatise on Electricity and Magnetism (Vol. 2) (London: Oxford University Press) pp173–215
[11] Nan C W, Shi Z, Lin Y 2003 Chem. Phys. Lett. 375 666
Google Scholar
[12] Mintsa H A, Roy G, Nguyen C T, Doucet D 2009 Int. J. Therm. Sci. 48 363
Google Scholar
[13] Brinkman H C 1952 J. Chem. Phys. 20 571
Google Scholar
[14] Batchelor G K 1977 J. Fluid Mech. 83 97
Google Scholar
[15] Nguyen C T, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Minsta H A 2007 Int. J. Heat Fluid Flow 28 1492
Google Scholar
[16] Majumdar A 1993 J. Heat Transfer 115 7
Google Scholar
[17] Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749
Google Scholar
[18] Su Y, Davidson J H 2018 Int. J. Heat Mass Transfer 127 303
Google Scholar
[19] Chambre P A, Schaaf S A 1961 Flow of Rarefied Gases (Princeton: Princeton University Press) pp78–146
[20] Sui P, Su Y, Sin V, Davidson J H 2022 Int. J. Heat Mass Transfer 187 122541
Google Scholar
[21] Zarki A, Ghalambaz M, Chamkha A J, Ghalambaz M, Rossi D D 2015 Adv. Powder Technol. 26 935
Google Scholar
[22] Sabour M, Ghalambaz M, Chamkha A 2017 Int. J. Numer. Methods Heat Fluid Flow 27 1504
Google Scholar
[23] Paul T C, Morshed A, Fox E B, Khan J A 2017 Int. J. Heat Mass Transfer 28 753
[24] Liu F, Wang L 2009 Int. J. Heat Mass Transfer 52 5849
Google Scholar
[25] Zahmatkesh I, Sheremet M, Yang L, Heris S Z, Sharifpur M, Meyer J P, Ghalambaz M, Wongwises S, Jing D, Mahian O 2021 J. Mol. Liq. 321 114430
Google Scholar
[26] Trodi A, Benhamza M E H 2017 Chem. Eng. Commun. 204 158
Google Scholar
[27] Sheikhzadeh G A, Aghaei A, Soleimani S 2018 Challenges Nano Micro Scale Sci. Technol. 6 27
[28] Dogonchi A S, Hashemi-Tilehnoee M, Waqas M, Seyyedi S M, Animasaun I L, Ganji D D 2020 Phys. A 540 123034
Google Scholar
[29] 张贝豪, 郑林 2020 69 164401
Google Scholar
Zhang B H, Zheng L 2020 Acta Phys. Sin. 69 164401
Google Scholar
[30] Su Y, Sui P, Davidson J H 2022 Renew. Energy 184 712
Google Scholar
[31] Lai F, Yang Y 2011 Int. J. Therm. Sci. 50 1930
Google Scholar
[32] Sheikholeslami M, Gorji-Bandpy M, Domairry G 2013 Appl. Math. Mech. 34 833
Google Scholar
[33] 齐聪, 何光艳, 李意民, 何玉荣 2015 64 328
Google Scholar
Qi C, He G Y, Li Y M, He Y R 2015 Acta Phys. Sin. 64 328
Google Scholar
[34] Taher M A, Kim H D, Lee Y W 2017 Heat Transfer Res. 48 1025
Google Scholar
[35] 袁俊杰, 叶欣, 单彦广 2021 计算物理 38 57
Yuan J J, Ye X, Shan Y G 2021 Chinese Journal of Computational Physics 38 57
[36] Ganji D D, Malvandi A 2014 Powder Technol. 263 50
Google Scholar
[37] Hwang K S, Lee J H, Jang S P 2009 Int. J. Heat Mass Transfer 50 4003
[38] Wang D, Cheng P, Quan X 2019 Int. J. Heat Mass Transfer 130 1358
Google Scholar
[39] Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transfer 92 995
Google Scholar
[40] Tarokh A, Mohamad A, Jiang L 2013 Numer. Heat Transfer, Part A 63 159
Google Scholar
[41] Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506
Google Scholar
[42] Li C H, Peterson G P 2007 J. Appl. Phys. 101 044312
Google Scholar
[43] Chon C H, Kihm K D, Lee S P 2005 Appl. Phys. Lett. 87 153107
Google Scholar
计量
- 文章访问数: 1285
- PDF下载量: 75