-
多模复合成像技术结合了不同传感器的优势, 具有图像质量高、信息获取能力强、目标检测和识别能力高、对复杂环境的强适应能力、系统的稳定性和鲁棒性高等优点. 其中, 太赫兹和红外复合成像技术结合了太赫兹波段和红外波段的特点, 具有宽频谱覆盖、高分辨率、穿透性强的优点, 有广阔的应用前景. 作为共口径复合成像系统的关键器件之一的太赫兹和红外波段的高效分光器目前仍然缺少, 性能亟待提升. 本文提出了一种结构简单、性能高效的双层金属加介质基底结构二向色超表面. 作为分光器件使用, 当入射角度为45°时, 其在中心频率1.1 THz附近实现大于97%的透射系数, 在中波红外3—5 μm和长波红外8—14 μm波长范围均实现大于98%的反射系数. 该设计对层间结构错位、结构倒圆角、小倍率缩放等结构失配和加工误差都具有很好的鲁棒性, 并且具有偏振不敏感特性. 而当入射角度在0°—60°内变化时, 器件依然保持优异的分光特性. 基于巴比涅定理和等效电路模型, 对该超表面的电磁响应特性进行理论分析, 分析结果与模拟仿真结果相吻合. 该研究结果证明了超表面作为分光器件应用于太赫兹与红外波段的多波长复合成像系统中的可行性, 并为未来新型复合成像探测技术的研究提供了支撑.The multi-mode composite imaging technology integrates the advantages of different sensors, and thus has the advantages of high image quality, strong information acquisition capability, high target detection and recognition ability, strong adaptability to complex environments, and high stability and robustness of the system. Among them, the terahertz and infrared composite imaging technology combines the characteristics of terahertz band and infrared band, has the advantages of wide spectrum coverage, high resolution and strong penetration, and has broad application prospects. As one of the key components of the common aperture composite imaging system, the efficient optical splitters in terahertz and infrared band are still lacking at present, and their performance needs to be improved urgently. In this paper, a kind of dichroic metasurface with a simple structure and high performance is proposed by combining simulation experiment and theoretical explanation. When used as a spectroscopic device at an incident angle of 45°, it achieves a transmission coefficient greater than 97% near the center frequency of 1.1 THz, and a reflection coefficient greater than 98% in a wavelength range of 3–5 μm for medium-wave infrared and 8–14 μm for long-wave infrared. The design has good robustness to structural mismatches and machining errors such as structural misalignment, structural fillet, small magnification scaling, and polarization insensitivity. When the incident angle changes in a range of 0–60°, the device still maintains excellent spectral characteristics. In this paper, based on Babinet theorem and equivalent circuit model, the electromagnetic response characteristics of the metasurface are analyzed theoretically, and the analysis results are in agreement with the simulation results. The results of this study prove the feasibility of metasurface as a spectral device in the multiwavelength composite imaging system of terahertz and infrared bands, and provide support for future studying new composite imaging detection technology. In addition, the metasurface structure described in this paper has broad application prospects in many fields such as multi-band infrared stealth, laser and pump light separation in lasers, and provides a valuable reference for designing terahertz and infrared spectroscopy in various scenarios. In the following figure, for S wave and P wave at an incident angle of 45°, panel (a) shows the reflection coefficients varying with the wavelength of metasurface and panel (b) displays terahertz transmission coefficient changing with frequency.
-
Keywords:
- metasurface /
- dichroic mirror /
- equivalent circuit model /
- Babinet theorem
[1] Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, Tzortzakis S 2020 Nat. Commun. 11 292Google Scholar
[2] Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar
[3] Liu Z M, Gao E D, Zhang X, Li H J, Xu H, Zhang Z B, Luo X, Zhou F Q 2020 New J. Phys. 22 053039Google Scholar
[4] Fan F, Zhang X Z, Li S S, Deng D C, Wang N, Zhang H, Chang S J 2015 Opt. Express 23 27204Google Scholar
[5] Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar
[6] Wade C G, Šibalić N, Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar
[7] Cheng Y Y, Qiao L B, Zhu D, Wang Y X, Zhao Z 2021 Opt. Lett. 46 1233Google Scholar
[8] Singh R J, Cao W, Ibraheem A N, Cong L Q, Withawat W, Zhang W L 2014 Appl. Phys. Lett. 105 171101Google Scholar
[9] Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. Terahertz Sci. Technol. 1 169Google Scholar
[10] Yang Y H, Mandehgar M, Grischkowsky D 2014 Opt. Express 22 4388Google Scholar
[11] 耿兴宁, 徐德刚, 李吉宁, 陈锴, 钟凯, 姚建铨 2020 强激光与粒子束 32 78Google Scholar
Geng X N, Xu D G, Li J N, Chen K, Zhong K, Yao J Q 2020 High Power Las. Part. Beams 32 78Google Scholar
[12] 陈锴, 耿兴宁, 李吉宁, 钟凯, 徐德刚, 蒋山亚, 张景川, 姚建铨 2020 航天器环境工程 37 421Google Scholar
Chen K, Geng X N, Li J N, Zhong K, Xu D G, Jiang S Y, Zhang J C, Yao J Q 2020 Spacecraft Environ. Eng. 37 421Google Scholar
[13] 刘闯 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Liu C 2016 Ph. D. Dissertation(Harbin: Harbin Institute of Technology
[14] Chen H T, Zhou J F, Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar
[15] 姚尧, 沈悦, 郝加明, 戴宁 2019 68 147802Google Scholar
Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar
[16] Sun K, Li J N, Sun J Y, Ge L, Xu D G, Zhong K, Yao J Q 2022 Results Phys. 33 105183Google Scholar
[17] Olmon L R, Slovick B, Johnson W T, Shelton D, Oh S H, Boreman G D, Raschke M B 2012 Phys. Rev. B 86 235147Google Scholar
[18] 郁道银, 谈恒英 2015 工程光学(第4版) (北京: 机械工业出版社) 第318页
Yu D Y, Tan H Y 2015 Engineering Optics (Vol. 4) (Beijing: China Machine Press) p318
[19] 本A明克 著 (侯新宇 译) 2009 频率选择表面理论与设计(北京: 科学出版社) 第110—113页
Munk B A (translated by Hou X Y) 2009 Frequency Selective Surfaces Theory and Design (Beijing: Science Press) pp4–8
[20] 张肃文 2009 高频电子线路 (第5版) (北京: 高等教育出版社) 第17—19页
Zhang S W 2009 High-Frenquency Electronic Circuit (Vol. 5) (Beijing: Higher Education Press) pp17–19
-
-
[1] Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, Tzortzakis S 2020 Nat. Commun. 11 292Google Scholar
[2] Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar
[3] Liu Z M, Gao E D, Zhang X, Li H J, Xu H, Zhang Z B, Luo X, Zhou F Q 2020 New J. Phys. 22 053039Google Scholar
[4] Fan F, Zhang X Z, Li S S, Deng D C, Wang N, Zhang H, Chang S J 2015 Opt. Express 23 27204Google Scholar
[5] Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar
[6] Wade C G, Šibalić N, Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar
[7] Cheng Y Y, Qiao L B, Zhu D, Wang Y X, Zhao Z 2021 Opt. Lett. 46 1233Google Scholar
[8] Singh R J, Cao W, Ibraheem A N, Cong L Q, Withawat W, Zhang W L 2014 Appl. Phys. Lett. 105 171101Google Scholar
[9] Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. Terahertz Sci. Technol. 1 169Google Scholar
[10] Yang Y H, Mandehgar M, Grischkowsky D 2014 Opt. Express 22 4388Google Scholar
[11] 耿兴宁, 徐德刚, 李吉宁, 陈锴, 钟凯, 姚建铨 2020 强激光与粒子束 32 78Google Scholar
Geng X N, Xu D G, Li J N, Chen K, Zhong K, Yao J Q 2020 High Power Las. Part. Beams 32 78Google Scholar
[12] 陈锴, 耿兴宁, 李吉宁, 钟凯, 徐德刚, 蒋山亚, 张景川, 姚建铨 2020 航天器环境工程 37 421Google Scholar
Chen K, Geng X N, Li J N, Zhong K, Xu D G, Jiang S Y, Zhang J C, Yao J Q 2020 Spacecraft Environ. Eng. 37 421Google Scholar
[13] 刘闯 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Liu C 2016 Ph. D. Dissertation(Harbin: Harbin Institute of Technology
[14] Chen H T, Zhou J F, Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar
[15] 姚尧, 沈悦, 郝加明, 戴宁 2019 68 147802Google Scholar
Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar
[16] Sun K, Li J N, Sun J Y, Ge L, Xu D G, Zhong K, Yao J Q 2022 Results Phys. 33 105183Google Scholar
[17] Olmon L R, Slovick B, Johnson W T, Shelton D, Oh S H, Boreman G D, Raschke M B 2012 Phys. Rev. B 86 235147Google Scholar
[18] 郁道银, 谈恒英 2015 工程光学(第4版) (北京: 机械工业出版社) 第318页
Yu D Y, Tan H Y 2015 Engineering Optics (Vol. 4) (Beijing: China Machine Press) p318
[19] 本A明克 著 (侯新宇 译) 2009 频率选择表面理论与设计(北京: 科学出版社) 第110—113页
Munk B A (translated by Hou X Y) 2009 Frequency Selective Surfaces Theory and Design (Beijing: Science Press) pp4–8
[20] 张肃文 2009 高频电子线路 (第5版) (北京: 高等教育出版社) 第17—19页
Zhang S W 2009 High-Frenquency Electronic Circuit (Vol. 5) (Beijing: Higher Education Press) pp17–19
计量
- 文章访问数: 799
- PDF下载量: 28
- 被引次数: 0