-
同时具有铁磁性与铁弹性的二维材料为磁性控制提供了全新机制,即通过切换材料的铁弹态控制磁化方向。源自半填充3d轨道的大磁矩和自发结构极化,使单分子层MoTeX(X=F,Cl,Br,I)成为潜在的磁弹性多铁材料。本文基于第一性原理计算,系统研究了单分子层MoTeX(X=F,Cl,Br,I)的铁磁性,铁弹性以及磁弹耦合性质。计算结果表明单分子层MoTeX为本征半导体,同时具有铁磁性和铁弹性。单分子层MoTeX的面内磁晶各向异性能显著,较高的磁晶各项异性能表明其具有抵抗热扰动的能力,能在有限温度下维持长程磁有序。另外,单分子层MoTeX的易磁化轴均沿着平面内方向。单分子层MoTeX在铁弹性转变过程中表现出相同幅度但符号相反的平面内磁各向异性能,意味着面内易磁化轴随铁弹态的转换旋转了90°。另外,其铁弹转换势垒(0.180 ~ 0.226 eV/atom)适中,表明单分子层MoTeX在室温下的可逆铁弹性转换和平面内易磁化轴的可逆转换。本工作提出了一种二维本征多铁半导体材料,为多功能自旋电子器件提供了新候选材料。Two-dimensional materials with both ferromagnetism and ferroelasticity present new possibilities for the development of spintronics and multifunctional devices. These materials offer a novel way of controlling the magnetization axis direction by switching the ferroelastic state, enabling efficient and low-power magnetic device operation. Such properties make them promising candidates for the next generation of non-volatile memory, sensors, and logic devices. By performing the first-principles calculations, we systematically investigated the ferromagnetism, ferroelasticity, and magnetoelastic coupling in MoTeX (X=F, Cl, Br, I) monolayers. The results indicate that MoTeX monolayers are intrinsic semiconductors holding both ferromagnetism and ferroelasticity. The pronounced in-plane magnetic anisotropy suggests that MoTeX monolayers can resist thermal disturbances and maintain long-range magnetic order. The Curie temperatures of MoTeX monolayers are 144.75, 194.55, 111.45, and 92.02 K, respectively. Our calculations show that the four MoTeX monolayers possess two stable ferroelastic states, with their easy magnetization axes perpendicular to each other. The ferroelastic transition barriers between the two ferroelastic states of MoTeF, MoTeCl, MoTeBr, MoTeI monolayers are 0.180, 0.200, 0.209, and 0.226 eV/atom, respectively, with reversible strains of 54.58%, 46.32%, 43.06%, and 38.12%. These values indicate the potential for reversible magnetic control through reversible ferroelastic transitions at room temperature. Owing to their unique magnetoelastic coupling properties, MoTeX monolayers demonstrate the ability of control on reversible magnetization axis at room temperature, laying the foundation for the development of highly controllable and stable spintronic devices.
-
Keywords:
- Two-dimensional materials /
- Density functional theory /
- Ferromagnetism /
- Ferroelasticity /
- Magnetoelastic coupling
-
[1] Fert A 2008 Rev. Mod. Phys. 80 1517
[2] Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668
[3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Sci. 294 1488
[4] Song Q, Occhialini C A, Ergecen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N, Comin R 2022 Nat. 602 601
[5] Xu S, Jia F, Yu X, Hu S, Gao H, Ren W 2022 Mater. Today Phys. 27 100775
[6] Spaldin N A, Fiebig M 2005 Sci. 09 391
[7] Hu T, Kan E 2019 WIREs Comput. Mol. Sci. 9 5
[8] Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133
[9] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng Ran, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nat.546 270
[10] Mosendz O, Pisana S, Reiner J W, Stipe B, Weller D 2012 J. Appl. Phys. 11
[11] Gong C, Li L, Li Z, Ji H, Stem A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nat.546 265
[12] Xu S, Jia F, Cheng X, Ren W 2021 J. Mater. Chem. C 9 17152
[13] Wenisch J, Gould C, Ebel L, Storz J, Pappert K, Schmidt M J, Kumpf C, Schmidt G, Brunner K, Molenkamp L W 2007 Phys. Rev. Lett. 99 077201
[14] Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256
[15] Hu J M, Nan C W 2009 Phys. Rev. B 80 224416
[16] Shen S, Xu X, Huang B, Kou L, Dai Y, Ma Y 2021 Phys. Rev. B 103
[17] Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S, Corte-Leon H, Wu Z, Clark N, Summerfield A, Hashimoto T, Gao Y, Wang W, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Falko V, Gorbachev R 2022 Nat. Nanotechnol. 17 390
[18] Abdullahi Y Z, Vatansever Z D, Ersan F, Akinci U, Akturk O U, Akturk E 2021 Phys. Chem. Chem. Phys. 23 6107
[19] Akgenc B, Vatansever E, Ersan F 2021 Phys. Rev. Mater. 5
[20] Abdullahi Y Z, Ersan F, Vatansever Z D, Akturk E, Akturk O U 2020 J. Appl. Phys. 128
[21] Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczynski J, Kossacki P, Wildes A R, Gremaud B, Saul A 2020 2D Mater. 7 035030
[22] Xiao G, Xiao W Z, Feng Y X, Rong Q Y, Chen Q 2023 Nanoscale. 15 17963
[23] Guo Z, Liu Y, Jiang H, Zhang X, Jin L, Liu C, Liu G 2023 Mater. Today Phys.36 101153
[24] Li Y, Deng J, Zhang Y F, Jin X, Dong W, Sun J, Pan J, Du S 2023 npj Comput. Mater. 9 1-10
[25] Yang H, Song M, Li Y, Guo Y, Han K 2022 Physica E. 143 115341
[26] Xu S, Jia F, Zhao G, Wu W, Ren W 2021 J. Mater. Chem. C. 9 9130
[27] Feng Y, Wang Z, Liu N, Yang Q 2023 Nanoscale.15 4546
[28] Hu M, Xu S, Liu C, Zhao G, Yu J, Ren W 2020 Nanoscale.12 24237
[29] Xu B, Li S, Jiang K, Yin J, Liu Z, Cheng Y, Zhong W 2020 Appl. Phys. Lett. 116
[30] Sun H, Qu Z, Li A, Wan Y,Wu F, Huang C, Kan E 2023 Appl. Phys. Lett. 123 042901
[31] Zeng Y, Gu P, Zhao Z, Zhang B, Lin Z, Peng Y, Li W, Zhao W, Leng Y, Tan P, Yang T, Zhang Z, Song Y, Yang J, Ye Y, Tian K, Hou Y 2022 Adv. Mater. 34 2108847
[32] Zhou J, Xu H, Li Y, Jaramillo R 2018 Nano Lett. 18 7794
[33] Blochl P 1994 Phys. Rev. B. 50 17953
[34] Kresse G, Furthumller J 1996 Phys. Rev. B. 54 11169
[35] Blochl P E, Forst C J, Schimpl J 2003 Bull. Mater. Sci. 26 33
[36] Monkhorst H J, Pack J D 1976 Phys. Rev. B. 13 5188
[37] Togo A, Oba F, Tanaka I 2008 Phys. Rev. B. 8 134106
[38] Togo A, Tanaka I 2015 Scr. Mater. 108 1
[39] Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B. 82 235414
[40] Kanamori J 1960 J. Appl. Phys. 31 S14
[41] Goodenough J B 1955 Phys. Rev. 100 564
[42] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nat.546 270
[43] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nat.546 265
[44] Dang N T, Kozlenko D P, Lis O N, Kichanov S E, Lulin Y V, Golosova N O, Savenko B N, Duong D L, Phan T L, Tran T A, Phan M H 2023 Adv. Sci. 10
[45] Miao N, Xu B, Zhu L, Zhou J, Sun Z 2018 J. Am. Chem. Soc. 140 2417
[46] Gao Z, Wang Y, Gao J, Cui Z, Zhang X, Shi J, Fan X 2022 Comput. Mater. Sci. 213 111611
[47] Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 9901
[48] Wang H, Li X, Sun J, Liu Z, Yang J 2017 2D Mater. 4 045020
[49] Pang Z, Ji W, Zhang C, Wang P, Li P 2021 Chem. Phys. Lett. 763 138163
[50] Zhang S, Liu B 2018 Nanoscale.10 5990
[51] Li W, Li J 2016 Nat. Commun. 7 10843
计量
- 文章访问数: 63
- PDF下载量: 4
- 被引次数: 0