搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有磁弹耦合的本征多铁半导体*:单分子层MoTeX(X=F,Cl,Br,I)

高金玮 陈璐 李旭洪 史俊勤 曹腾飞 范晓丽

引用本文:
Citation:

具有磁弹耦合的本征多铁半导体*:单分子层MoTeX(X=F,Cl,Br,I)

高金玮, 陈璐, 李旭洪, 史俊勤, 曹腾飞, 范晓丽

Intrinsic multiferroic semiconductors with magnetoelastic coupling*: Two-dimensional MoTeX(X=F, Cl, Br, I)monolayers

Jinwei Gao, Lu Chen, Xuhong Li, Junqin Shi, Tengfei Cao, Xiaoli Fan
PDF
导出引用
  • 同时具有铁磁性与铁弹性的二维材料为磁性控制提供了全新机制,即通过切换材料的铁弹态控制磁化方向。源自半填充3d轨道的大磁矩和自发结构极化,使单分子层MoTeX(X=F,Cl,Br,I)成为潜在的磁弹性多铁材料。本文基于第一性原理计算,系统研究了单分子层MoTeX(X=F,Cl,Br,I)的铁磁性,铁弹性以及磁弹耦合性质。计算结果表明单分子层MoTeX为本征半导体,同时具有铁磁性和铁弹性。单分子层MoTeX的面内磁晶各向异性能显著,较高的磁晶各项异性能表明其具有抵抗热扰动的能力,能在有限温度下维持长程磁有序。另外,单分子层MoTeX的易磁化轴均沿着平面内方向。单分子层MoTeX在铁弹性转变过程中表现出相同幅度但符号相反的平面内磁各向异性能,意味着面内易磁化轴随铁弹态的转换旋转了90°。另外,其铁弹转换势垒(0.180 ~ 0.226 eV/atom)适中,表明单分子层MoTeX在室温下的可逆铁弹性转换和平面内易磁化轴的可逆转换。本工作提出了一种二维本征多铁半导体材料,为多功能自旋电子器件提供了新候选材料。
    Two-dimensional materials with both ferromagnetism and ferroelasticity present new possibilities for the development of spintronics and multifunctional devices. These materials offer a novel way of controlling the magnetization axis direction by switching the ferroelastic state, enabling efficient and low-power magnetic device operation. Such properties make them promising candidates for the next generation of non-volatile memory, sensors, and logic devices. By performing the first-principles calculations, we systematically investigated the ferromagnetism, ferroelasticity, and magnetoelastic coupling in MoTeX (X=F, Cl, Br, I) monolayers. The results indicate that MoTeX monolayers are intrinsic semiconductors holding both ferromagnetism and ferroelasticity. The pronounced in-plane magnetic anisotropy suggests that MoTeX monolayers can resist thermal disturbances and maintain long-range magnetic order. The Curie temperatures of MoTeX monolayers are 144.75, 194.55, 111.45, and 92.02 K, respectively. Our calculations show that the four MoTeX monolayers possess two stable ferroelastic states, with their easy magnetization axes perpendicular to each other. The ferroelastic transition barriers between the two ferroelastic states of MoTeF, MoTeCl, MoTeBr, MoTeI monolayers are 0.180, 0.200, 0.209, and 0.226 eV/atom, respectively, with reversible strains of 54.58%, 46.32%, 43.06%, and 38.12%. These values indicate the potential for reversible magnetic control through reversible ferroelastic transitions at room temperature. Owing to their unique magnetoelastic coupling properties, MoTeX monolayers demonstrate the ability of control on reversible magnetization axis at room temperature, laying the foundation for the development of highly controllable and stable spintronic devices.
  • [1]

    Fert A 2008 Rev. Mod. Phys. 80 1517

    [2]

    Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668

    [3]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Sci. 294 1488

    [4]

    Song Q, Occhialini C A, Ergecen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N, Comin R 2022 Nat. 602 601

    [5]

    Xu S, Jia F, Yu X, Hu S, Gao H, Ren W 2022 Mater. Today Phys. 27 100775

    [6]

    Spaldin N A, Fiebig M 2005 Sci. 09 391

    [7]

    Hu T, Kan E 2019 WIREs Comput. Mol. Sci. 9 5

    [8]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [9]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng Ran, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nat.546 270

    [10]

    Mosendz O, Pisana S, Reiner J W, Stipe B, Weller D 2012 J. Appl. Phys. 11

    [11]

    Gong C, Li L, Li Z, Ji H, Stem A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nat.546 265

    [12]

    Xu S, Jia F, Cheng X, Ren W 2021 J. Mater. Chem. C 9 17152

    [13]

    Wenisch J, Gould C, Ebel L, Storz J, Pappert K, Schmidt M J, Kumpf C, Schmidt G, Brunner K, Molenkamp L W 2007 Phys. Rev. Lett. 99 077201

    [14]

    Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256

    [15]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [16]

    Shen S, Xu X, Huang B, Kou L, Dai Y, Ma Y 2021 Phys. Rev. B 103

    [17]

    Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S, Corte-Leon H, Wu Z, Clark N, Summerfield A, Hashimoto T, Gao Y, Wang W, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Falko V, Gorbachev R 2022 Nat. Nanotechnol. 17 390

    [18]

    Abdullahi Y Z, Vatansever Z D, Ersan F, Akinci U, Akturk O U, Akturk E 2021 Phys. Chem. Chem. Phys. 23 6107

    [19]

    Akgenc B, Vatansever E, Ersan F 2021 Phys. Rev. Mater. 5

    [20]

    Abdullahi Y Z, Ersan F, Vatansever Z D, Akturk E, Akturk O U 2020 J. Appl. Phys. 128

    [21]

    Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczynski J, Kossacki P, Wildes A R, Gremaud B, Saul A 2020 2D Mater. 7 035030

    [22]

    Xiao G, Xiao W Z, Feng Y X, Rong Q Y, Chen Q 2023 Nanoscale. 15 17963

    [23]

    Guo Z, Liu Y, Jiang H, Zhang X, Jin L, Liu C, Liu G 2023 Mater. Today Phys.36 101153

    [24]

    Li Y, Deng J, Zhang Y F, Jin X, Dong W, Sun J, Pan J, Du S 2023 npj Comput. Mater. 9 1-10

    [25]

    Yang H, Song M, Li Y, Guo Y, Han K 2022 Physica E. 143 115341

    [26]

    Xu S, Jia F, Zhao G, Wu W, Ren W 2021 J. Mater. Chem. C. 9 9130

    [27]

    Feng Y, Wang Z, Liu N, Yang Q 2023 Nanoscale.15 4546

    [28]

    Hu M, Xu S, Liu C, Zhao G, Yu J, Ren W 2020 Nanoscale.12 24237

    [29]

    Xu B, Li S, Jiang K, Yin J, Liu Z, Cheng Y, Zhong W 2020 Appl. Phys. Lett. 116

    [30]

    Sun H, Qu Z, Li A, Wan Y,Wu F, Huang C, Kan E 2023 Appl. Phys. Lett. 123 042901

    [31]

    Zeng Y, Gu P, Zhao Z, Zhang B, Lin Z, Peng Y, Li W, Zhao W, Leng Y, Tan P, Yang T, Zhang Z, Song Y, Yang J, Ye Y, Tian K, Hou Y 2022 Adv. Mater. 34 2108847

    [32]

    Zhou J, Xu H, Li Y, Jaramillo R 2018 Nano Lett. 18 7794

    [33]

    Blochl P 1994 Phys. Rev. B. 50 17953

    [34]

    Kresse G, Furthumller J 1996 Phys. Rev. B. 54 11169

    [35]

    Blochl P E, Forst C J, Schimpl J 2003 Bull. Mater. Sci. 26 33

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B. 13 5188

    [37]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B. 8 134106

    [38]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1

    [39]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B. 82 235414

    [40]

    Kanamori J 1960 J. Appl. Phys. 31 S14

    [41]

    Goodenough J B 1955 Phys. Rev. 100 564

    [42]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nat.546 270

    [43]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nat.546 265

    [44]

    Dang N T, Kozlenko D P, Lis O N, Kichanov S E, Lulin Y V, Golosova N O, Savenko B N, Duong D L, Phan T L, Tran T A, Phan M H 2023 Adv. Sci. 10

    [45]

    Miao N, Xu B, Zhu L, Zhou J, Sun Z 2018 J. Am. Chem. Soc. 140 2417

    [46]

    Gao Z, Wang Y, Gao J, Cui Z, Zhang X, Shi J, Fan X 2022 Comput. Mater. Sci. 213 111611

    [47]

    Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 9901

    [48]

    Wang H, Li X, Sun J, Liu Z, Yang J 2017 2D Mater. 4 045020

    [49]

    Pang Z, Ji W, Zhang C, Wang P, Li P 2021 Chem. Phys. Lett. 763 138163

    [50]

    Zhang S, Liu B 2018 Nanoscale.10 5990

    [51]

    Li W, Li J 2016 Nat. Commun. 7 10843

  • [1] 徐思源, 张召富, 王俊, 刘雪飞, 郭宇铮. MoSi2N4的本征点缺陷以及掺杂特性的第一性原理计算.  , doi: 10.7498/aps.73.20231931
    [2] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究.  , doi: 10.7498/aps.73.20240134
    [3] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , doi: 10.7498/aps.73.20231229
    [4] 陈崇, 马铭远, 潘峰, 宋成. 磁声耦合: 物理、材料与器件.  , doi: 10.7498/aps.73.20231908
    [5] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究.  , doi: 10.7498/aps.72.20230528
    [6] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , doi: 10.7498/aps.72.20231229
    [7] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性.  , doi: 10.7498/aps.71.20211516
    [8] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质.  , doi: 10.7498/aps.71.20220407
    [9] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性.  , doi: 10.7498/aps.70.20210949
    [10] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究.  , doi: 10.7498/aps.70.20211516
    [11] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , doi: 10.7498/aps.70.20202146
    [12] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , doi: 10.7498/aps.70.20202132
    [13] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究.  , doi: 10.7498/aps.68.20181648
    [14] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理.  , doi: 10.7498/aps.67.20180251
    [15] 王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦, W. Cao. Cu掺杂ZnO磁性能的实验与理论研究.  , doi: 10.7498/aps.63.157502
    [16] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , doi: 10.7498/aps.63.113101
    [17] 吴孔平, 顾书林, 朱顺明, 黄友锐, 周孟然. 非故意掺杂碳对ZnMnO:N磁性影响的实验与理论研究.  , doi: 10.7498/aps.61.057503
    [18] 程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. Co掺杂的ZnO室温铁磁半导体材料制备与磁性和光学特性研究.  , doi: 10.7498/aps.58.2018
    [19] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , doi: 10.7498/aps.57.4857
    [20] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , doi: 10.7498/aps.57.4539
计量
  • 文章访问数:  63
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-08-29

/

返回文章
返回
Baidu
map